34 research outputs found
Impact of blood storage and sample handling on quality of high dimensional flow cytometric data in multicenter clinical research
Obtaining reliable and reproducible high quality data in multicenter clinical research settings requires design of optimal standard operating procedures. While the need for standardization in sample processing and data analysis is well-recognized, the impact of sample handling in the pre-analytical phase remains underestimated. We evaluated the impact of sample storage time (approximate to transport time) and temperature, type of anticoagulant, and limited blood volume on reproducibility of flow cytometric studies.
EDTA and Na-Heparin samples processed with the EuroFlow bulk lysis protocol, stained and stored at 4 degrees C showed fairly stable expression of cell surface markers and distribution of the major leukocyte populations for up to 72 h. Additional sample fixation (1% PFA, Fix & Perm) did not have any beneficial effects. Blood samples stored for < 24 h at room temperature before processing and staining seemed suitable for reliable immunophenotyping, although losses in absolute cell numbers were observed. The major losses were observed in myeloid cells and monocytes, while lymphocytes seemed less affected. Expression of cell surface markers and population distribution were more stable in Na-Heparin blood than in EDTA blood. However, storage of Na-Heparin samples was associated with faster decrease in leukocyte counts over time. Whole blood fixation strategies (Cyto-Chex, TransFix) improved long-term population distribution, but were detrimental for expression of cellular markers. The main conclusions from this study on healthy donor blood samples were successfully confirmed in EDTA clinical (patient) blood samples with different time delays until processing. Finally, we recognized the need for adjustments in bulk lysis in case of insufficient blood volumes.
Despite clear overall conclusions, individual markers and cell populations had different preferred conditions. Therefore, specific guidelines for sample handling should always be adjusted to the clinical application and the main target leukocyte population
In-depth blood immune profiling of Good syndrome patients
[Introduction]: Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID).[Methods]: Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61).[Results]: All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/ÎŒL) in 8/9 cases-, together with decreased numbers of total CD4+ T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCRγΎ+ T-cells (p †0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4+ T-cells revealed significantly decreased blood counts of naĂŻve, central memory (CM) and transitional memory (TM) TCD4+ cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c+ and CD141+ myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCRγΎ+ T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected.[Discussion]: Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.AT-V is supported by a grant from the Junta de Castilla y LeĂłn (Fondo Social Europeo, Orden EDU/601/2020, Valladolid, Spain). This study has been founded by the Instituto de Salud Carlos III (ISCIII) through the project âPI20/01712â and co-founded by the European Union.Peer reviewe
Improved standardization of flow cytometry diagnostic screening of primary immunodeficiency by software-based automated gating
BackgroundMultiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow. Here, we evaluated the contribution of these innovative AG&I tools to the standardization of FC in the diagnostic work-up of PID, by comparing AG&I against expert-based (EuroFlow-standardized) Manual Gating (MG) strategy, and its impact on the reproducibility and clinical interpretation of results.MethodsFC data files from 44 patients (13 CVID, 12 PID, 19 non-PID) and 26 healthy donor (HD) blood samples stained with PIDOT were analyzed in parallel by MG and AG&I, using Infinicyt (TM) software (Cytognos). For comparison, percentage differences in absolute cell counts/mu L were calculated for each lymphocyte subpopulation. Data files showing differences >20% were checked for their potential clinical relevance, based on age-matched percentile (p5-p95) reference ranges. In parallel, intra- and inter-observer reproducibility of MG vs AG&I were evaluated in a subset of 12 samples.ResultsThe AG&I approach was able to identify the vast majority of lymphoid events (>99%), associated with a significantly higher intra- and inter-observer reproducibility compared to MG. For most HD (83%) and patient (68%) samples, a high degree of agreement (<20% numerical differences in absolute cell counts/mu L) was obtained between MG and the AG&I module. This translated into a minimal impact (<5% of observations) on the final clinical interpretation. In all except three samples, extended expert revision of the AG&I approach revealed no error. In the three remaining samples aberrant maturation and/or abnormal marker expression profiles were seen leading in all three cases to numerical alarms by AG&I.ConclusionAltogether, our results indicate that replacement of MG by the AG&I module would be associated with a greater reproducibility and robustness of results in the diagnostic work-up of patients suspected of PID. However, expert revision of the results of AG&I of PIDOT data still remains necessary in samples with numerical alterations and aberrant B- and T-cell maturation and/or marker expression profiles.Stemcel biology/Regenerative medicine (incl. bloodtransfusion
In-depth blood immune profiling of Good syndrome patients
Introduction: Good syndrome (GS) is a rare adult-onset immunodeficiency first described in 1954. It is characterized by the coexistence of a thymoma and hypogammaglobulinemia, associated with an increased susceptibility to infections and autoimmunity. The classification and management of GS has been long hampered by the lack of data about the underlying immune alterations, a controversy existing on whether it is a unique diagnostic entity vs. a subtype of Common Variable Immune Deficiency (CVID).Methods: Here, we used high-sensitive flow cytometry to investigate the distribution of up to 70 different immune cell populations in blood of GS patients (n=9) compared to age-matched CVID patients (n=55) and healthy donors (n=61).Results: All 9 GS patients displayed reduced B-cell counts -down to undetectable levels (<0.1 cells/mu L) in 8/9 cases-, together with decreased numbers of total CD4(+) T-cells, NK-cells, neutrophils, and basophils vs. age-matched healthy donors. In contrast, they showed expanded TCR gamma delta(+) T-cells (p <= 0.05). Except for a deeper B-cell defect, the pattern of immune cell alteration in blood was similar in GS and (age-matched) CVID patients. In depth analysis of CD4(+) T-cells revealed significantly decreased blood counts of na & iuml;ve, central memory (CM) and transitional memory (TM) TCD4(+) cells and their functional compartments of T follicular helper (TFH), regulatory T cells (Tregs), T helper (Th)2, Th17, Th22, Th1/Th17 and Th1/Th2 cells. In addition, GS patients also showed decreased NK-cell, neutrophil, basophil, classical monocyte and of both CD1c(+) and CD141(+) myeloid dendritic cell counts in blood, in parallel to an expansion of total and terminal effector TCR gamma delta(+) T-cells. Interestingly, those GS patients who developed hypogammaglobulinemia several years after the thymoma presented with an immunological and clinical phenotype which more closely resembled a combined immune humoral and cellular defect, with poorer response to immunoglobulin replacement therapy, as compared to those in whom the thymoma and hypogammaglobulinemia were simultaneously detected.Discussion: Our findings provide a more accurate definition of the immune cell defects of GS patients and contribute to a better discrimination among GS patients between those with a pure B-cell defect vs. those suffering from a combined immunodeficiency with important consequences on the diagnosis and management of the disease.Stemcel biology/Regenerative medicine (incl. bloodtransfusion
Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings
Background: Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings.
Methodology: Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 mm, BAF-500), in the implant vicinity (100 mm, BAF-100) and further away (100â500 mm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis.
Principal Findings: After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p.0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-mm compared to the 400-mm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR.
Conclusions: BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didnât stimulate bone regeneration but allowed bone growth into the pores. Although AMS didnât stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation.status: publishe
Directing Cluster Formation of Au Nanoparticles from Colloidal Solution
Discrete clusters of closely spaced Au nanoparticles can be utilized in devices from photovoltaics to molecular sensors because of the formation of strong local electromagnetic field enhancements when illuminated near their plasmon resonance. In this study, scalable, chemical self-organization methods are shown to produce Au nanoparticle clusters with uniform nanometer interparticle spacing. The performance of two different methods, namely electrophoresis and diffusion, for driving the attachment of Au nanoparticles using a chemical cross-linker on chemically patterned domains of polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) thin films are evaluated. Significantly, electrophoresis is found to produce similar surface coverage as diffusion in 1/6th of the processing time with an ~2-fold increase in the number of Au nanoparticles forming clusters. Furthermore, average interparticle spacing within Au nanoparticle clusters was found to decrease from 2-7 nm for diffusion deposition to approximately 1-2 nm for electrophoresis deposition, and the latter method exhibited better uniformity with most clusters appearing to have about 1 nm spacing between nanoparticles. The advantage of such fabrication capability is supported by calculations of local electric field enhancements using electromagnetic full-wave simulations from which we can estimate surface-enhanced Raman scattering (SERS) enhancements. In particular, full-wave results show that the maximum SERS enhancement, as estimated here as the fourth power of the local electric field, increases by a factor of 100 when the gap goes from 2 to 1 nm, reaching values as large as 10(10), strengthening the usage of electrophoresis versus diffusion for the development of molecular sensors
Improved Standardization of Flow Cytometry Diagnostic Screening of Primary Immunodeficiency by Software-Based Automated Gating
© 2020 Linskens, Diks, Neirinck, Perez-Andres, De Maertelaere, Berkowska, Kerre, Hofmans, Orfao, van Dongen, Haerynck, Philippé and Bonroy.Background: Multiparameter flow cytometry (FC) is essential in the diagnostic work-up and classification of primary immunodeficiency (PIDs). The EuroFlow PID Orientation tube (PIDOT) allows identification of all main lymphocyte subpopulations in blood. To standardize data analysis, tools for Automated Gating and Identification (AG&I) of the informative cell populations, were developed by EuroFlow. Here, we evaluated the contribution of these innovative AG&I tools to the standardization of FC in the diagnostic work-up of PID, by comparing AG&I against expert-based (EuroFlow-standardized) Manual Gating (MG) strategy, and its impact on the reproducibility and clinical interpretation of results. Methods: FC data files from 44 patients (13 CVID, 12 PID, 19 non-PID) and 26 healthy donor (HD) blood samples stained with PIDOT were analyzed in parallel by MG and AG&I, using Infinicyt⹠software (Cytognos). For comparison, percentage differences in absolute cell counts/”L were calculated for each lymphocyte subpopulation. Data files showing differences >20% were checked for their potential clinical relevance, based on age-matched percentile (p5-p95) reference ranges. In parallel, intra- and inter-observer reproducibility of MG vs AG&I were evaluated in a subset of 12 samples. Results: The AG&I approach was able to identify the vast majority of lymphoid events (>99%), associated with a significantly higher intra- and inter-observer reproducibility compared to MG. For most HD (83%) and patient (68%) samples, a high degree of agreement (<20% numerical differences in absolute cell counts/”L) was obtained between MG and the AG&I module. This translated into a minimal impact (<5% of observations) on the final clinical interpretation. In all except three samples, extended expert revision of the AG&I approach revealed no error. In the three remaining samples aberrant maturation and/or abnormal marker expression profiles were seen leading in all three cases to numerical alarms by AG&I. Conclusion: Altogether, our results indicate that replacement of MG by the AG&I module would be associated with a greater reproducibility and robustness of results in the diagnostic work-up of patients suspected of PID. However, expert revision of the results of AG&I of PIDOT data still remains necessary in samples with numerical alterations and aberrant B- and T-cell maturation and/or marker expression profiles.The coordination and innovation processes of this study were supported by the EuroFlow Consortium. The EuroFlow Consortium received support from the FP6-2004-LIFESCIHEALTH-5 program of the European Commission (grant LSHB-CT-2006-018708) as Specific Targeted Research Project (STREP). The EuroFlow Consortium is part of the European Scientific Foundation for Hemato-Oncology (ESLHO), a Scientific Working Group (SWG) of the European Hematology Association (EHA). JN is granted by the Fund for Scientific Research, TBM Funding, Belgium (T000119N). This work was also supported by a grant of the Grand Challenges Program of VIB