1,239 research outputs found
Phase Variation in the Pulse Profile of SMC X-1
We present the results of timing and spectral analysis of X-ray high state
observations of the high-mass X-ray pulsar SMC X-1 with Chandra, XMM-Newton,
and ROSAT, taken between 1991 and 2001. The source has L_X ~ 3-5 x 10^38
ergs/s, and the spectra can be modeled as a power law plus blackbody with kT_BB
\~ 0.18 keV and reprocessed emission radius R_BB ~ 2 x 10^8 cm, assuming a
distance of 60 kpc to the source. Energy-resolved pulse profiles show several
distinct forms, more than half of which include a second pulse in the soft
profile, previously documented only in hard energies. We also detect
significant variation in the phase shift between hard and soft pulses, as has
recently been reported in Her X-1. We suggest an explanation for the observed
characteristics of the soft pulses in terms of precession of the accretion
disk.Comment: 4 pages, 4 figures, accepted for publication in ApJL; v2 minor
corrections, as will appear in ApJ
Ubiquitous equatorial accretion disc winds in black hole soft states
High resolution spectra of Galactic Black Holes (GBH) reveal the presence of
highly ionised absorbers. In one GBH, accreting close to the Eddington limit
for more than a decade, a powerful accretion disc wind is observed to be
present in softer X-ray states and it has been suggested that it can carry away
enough mass and energy to quench the radio jet. Here we report that these
winds, which may have mass outflow rates of the order of the inner accretion
rate or higher, are an ubiquitous component of the jet-free soft states of all
GBH. We furthermore demonstrate that these winds have an equatorial geometry
with opening angles of few tens of degrees, and so are only observed in sources
in which the disc is inclined at a large angle to the line of sight. The
decrease in Fe XXV / Fe XXVI line ratio with Compton temperature, observed in
the soft state, suggests a link between higher wind ionisation and harder
spectral shapes. Although the physical interaction between the wind, accretion
flow and jet is still not fully understood, the mass flux and power of these
winds, and their presence ubiquitously during the soft X-ray states suggests
they are fundamental components of the accretion phenomenon.Comment: Accepted for publication in MNRAS Letter
Boosting jet power in black hole spacetimes
The extraction of rotational energy from a spinning black hole via the
Blandford-Znajek mechanism has long been understood as an important component
in models to explain energetic jets from compact astrophysical sources. Here we
show more generally that the kinetic energy of the black hole, both rotational
and translational, can be tapped, thereby producing even more luminous jets
powered by the interaction of the black hole with its surrounding plasma. We
study the resulting Poynting jet that arises from single boosted black holes
and binary black hole systems. In the latter case, we find that increasing the
orbital angular momenta of the system and/or the spins of the individual black
holes results in an enhanced Poynting flux.Comment: 7 pages, 5 figure
Statistics of X-ray flares of Sagittarius A*: evidence for solar-like self-organized criticality phenomenon
X-ray flares have routinely been observed from the supermassive black hole,
Sagittarius A (Sgr A), at our Galactic center. The nature of
these flares remains largely unclear, despite of many theoretical models. In
this paper, we study the statistical properties of the Sgr A X-ray
flares, by fitting the count rate (CR) distribution and the structure function
(SF) of the light curve with a Markov Chain Monte Carlo (MCMC) method. With the
3 million second \textit{Chandra} observations accumulated in the Sgr A
X-ray Visionary Project, we construct the theoretical light curves through
Monte Carlo simulations. We find that the keV X-ray light curve can be
decomposed into a quiescent component with a constant count rate of
count s and a flare component with a power-law
fluence distribution with . The duration-fluence correlation can also be modelled as a
power-law with (
confidence). These statistical properties are consistent with the theoretical
prediction of the self-organized criticality (SOC) system with the spatial
dimension . We suggest that the X-ray flares represent plasmoid
ejections driven by magnetic reconnection (similar to solar flares) in the
accretion flow onto the black hole.Comment: to appear in Ap
The Surface Brightness Fluctuations and Globular Cluster Populations of M87 and its Companions
Using the surface brightness fluctuations in HST WFPC-2 images, we determine
that M87, NGC 4486B, and NGC 4478 are all at a distance of ~16 Mpc, while NGC
4476 lies in the background at ~21 Mpc. We also examine the globular clusters
of M87 using archived HST fields. We detect the bimodal color distribution, and
find that the amplitude of the red peak relative to the blue peak is greatest
near the center. This feature is in good agreement with the merger model of
elliptical galaxy formation, where some of the clusters originated in
progenitor galaxies while other formed during mergers.Comment: 5 pages, 2 figure
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
Quantifying human post-mortem movement resultant from decomposition processes.
BackgroundPost-mortem movement is highly significant in unexplained death investigations, as body position or the position of remains helps to determine cause and manner of death, as well as potentially the circumstances surrounding death. Therefore, understanding post-mortem movement is of forensic relevance in death scene assessments.PurposeThe aim of this study was to quantify post-mortem movement in anatomical structures of a human donor during decomposition in an Australian environment, an evaluation that has not previously been undertaken.MethodsThe aim was achieved using time-lapse images of a human donor decomposing in order to capture the post-mortem movement over a 16-month period. Megyesi et al.'s [1] total body score system was used to quantify the decomposition of the donor in each image to determine the decomposition stage. ImageJ software was used to determine the distance from static landmarks to anatomical structures of interest in each image to allow for quantification.ResultsEarly decomposition progressed rapidly, and advanced decomposition plateaued at 41 post-mortem interval days with a total body score of 24. The results support the conclusion that post-mortem movement does occur in all limbs of the donor. The anatomical structure that produced the most movement was the right styloid process of the radius, moving a total distance of 51.65 cm. A surprising finding of the study was that most post-mortem movement occurs in the advanced decomposition stage, with the lower limbs being the most active.ConclusionThis study supports that post-mortem movement can be quantified using time-lapse imagery, with results supporting movement in all limbs, a process that was active for the entire study period. An interesting finding was that the decomposition plateaued in the advanced stage with the donor remaining in mummification, and not reaching skeletonization after 16 months in situ. These findings are of significant importance to police in death scene assessments and forensic investigations
3D simulations of Einstein's equations: symmetric hyperbolicity, live gauges and dynamic control of the constraints
We present three-dimensional simulations of Einstein equations implementing a
symmetric hyperbolic system of equations with dynamical lapse. The numerical
implementation makes use of techniques that guarantee linear numerical
stability for the associated initial-boundary value problem. The code is first
tested with a gauge wave solution, where rather larger amplitudes and for
significantly longer times are obtained with respect to other state of the art
implementations. Additionally, by minimizing a suitably defined energy for the
constraints in terms of free constraint-functions in the formulation one can
dynamically single out preferred values of these functions for the problem at
hand. We apply the technique to fully three-dimensional simulations of a
stationary black hole spacetime with excision of the singularity, considerably
extending the lifetime of the simulations.Comment: 21 pages. To appear in PR
Entanglement without nonlocality
We consider the characterization of entanglement from the perspective of a
Heisenberg formalism. We derive an original two-party generalized separability
criteria, and from this describe a novel physical understanding of
entanglement. We find that entanglement may be considered as fundamentally a
local effect, and therefore as a separable computational resource from
nonlocality. We show how entanglement differs from correlation physically, and
explore the implications of this new conception of entanglement for the notion
of classicality. We find that this understanding of entanglement extends
naturally to multipartite cases.Comment: 9 pages. Expanded introduction and sections on physical entanglement
and localit
Continuous Variable Quantum State Sharing via Quantum Disentanglement
Quantum state sharing is a protocol where perfect reconstruction of quantum
states is achieved with incomplete or partial information in a multi-partite
quantum networks. Quantum state sharing allows for secure communication in a
quantum network where partial information is lost or acquired by malicious
parties. This protocol utilizes entanglement for the secret state distribution,
and a class of "quantum disentangling" protocols for the state reconstruction.
We demonstrate a quantum state sharing protocol in which a tripartite entangled
state is used to encode and distribute a secret state to three players. Any two
of these players can collaborate to reconstruct the secret state, whilst
individual players obtain no information. We investigate a number of quantum
disentangling processes and experimentally demonstrate quantum state
reconstruction using two of these protocols. We experimentally measure a
fidelity, averaged over all reconstruction permutations, of F = 0.73. A result
achievable only by using quantum resources.Comment: Published, Phys. Rev. A 71, 033814 (2005) (7 figures, 11 pages
- …