1,382 research outputs found

    A hierarchical approach to defining marine heatwaves

    Get PDF
    Marine heatwaves (MHWs) have been observed around the world and are expected to increase in intensity and frequency under anthropogenic climate change. A variety of impacts have been associated with these anomalous events, including shifts in species ranges, local extinctions and economic impacts on seafood industries through declines in important fishery species and impacts on aquaculture. Extreme temperatures are increasingly seen as important influences on biological systems, yet a consistent definition of MHWs does not exist. A clear definition will facilitate retrospective comparisons between MHWs, enabling the synthesis and a mechanistic understanding of the role of MHWs in marine ecosystems. Building on research into atmospheric heatwaves, we propose both a general and specific definition for MHWs, based on a hierarchy of metrics that allow for different data sets to be used in identifying MHWs. We generally define a MHW as a prolonged discrete anomalously warm water event that can be described by its duration, intensity, rate of evolution, and spatial extent. Specifically, we consider an anomalously warm event to be a MHW if it lasts for five or more days, with temperatures warmer than the 90th percentile based on a 30-year historical baseline period. This structure provides flexibility with regard to the description of MHWs and transparency in communicating MHWs to a general audience. The use of these metrics is illustrated for three 21st century MHWs; the northern Mediterranean event in 2003, the Western Australia ‘Ningaloo Niño’ in 2011, and the northwest Atlantic event in 2012. We recommend a specific quantitative definition for MHWs to facilitate global comparisons and to advance our understanding of these phenomena

    Longer and more frequent marine heatwaves over the past century

    Get PDF
    Heatwaves are important climatic extremes in atmospheric and oceanic systems that can have devastating and long-term impacts on ecosystems, with subsequent socioeconomic consequences. Recent prominent marine heatwaves have attracted considerable scientific and public interest. Despite this, a comprehensive assessment of how these ocean temperature extremes have been changing globally is missing. Using a range of ocean temperature data including global records of daily satellite observations, daily in situ measurements and gridded monthly in situ-based data sets, we identify significant increases in marine heatwaves over the past century. We find that from 1925 to 2016, global average marine heatwave frequency and duration increased by 34% and 17%, respectively, resulting in a 54% increase in annual marine heatwave days globally. Importantly, these trends can largely be explained by increases in mean ocean temperatures, suggesting that we can expect further increases in marine heatwave days under continued global warming

    Barriers and opportunities for evidence-based health service planning: the example of developing a Decision Analytic Model to plan services for sexually transmitted infections in the UK

    Get PDF
    Decision Analytic Models (DAMs) are established means of evidence-synthesis to differentiate between health interventions. They have mainly been used to inform clinical decisions and health technology assessment at the national level, yet could also inform local health service planning. For this, a DAM must take into account the needs of the local population, but also the needs of those planning its services. Drawing on our experiences from stakeholder consultations, where we presented the potential utility of a DAM for planning local health services for sexually transmitted infections (STIs) in the UK, and the evidence it could use to inform decisions regarding different combinations of service provision, in terms of their costs, cost-effectiveness, and public health outcomes, we discuss the barriers perceived by stakeholders to the use of DAMs to inform service planning for local populations, including (1) a tension between individual and population perspectives; (2) reductionism; and (3) a lack of transparency regarding models, their assumptions, and the motivations of those generating models

    A global assessment of marine heatwaves and their drivers

    Get PDF
    Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982–2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe – an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies

    Marine heatwaves threaten global biodiversity and the provision of ecosystem services

    Get PDF
    The global ocean has warmed substantially over the past century, with far-reaching implications for marine ecosystems 1 . Concurrent with long-term persistent warming, discrete periods of extreme regional ocean warming (marine heatwaves, MHWs) have increased in frequency 2 . Here we quantify trends and attributes of MHWs across all ocean basins and examine their biological impacts from species to ecosystems. Multiple regions in the Pacific, Atlantic and Indian Oceans are particularly vulnerable to MHW intensification, due to the co-existence of high levels of biodiversity, a prevalence of species found at their warm range edges or concurrent non-climatic human impacts. The physical attributes of prominent MHWs varied considerably, but all had deleterious impacts across a range of biological processes and taxa, including critical foundation species (corals, seagrasses and kelps). MHWs, which will probably intensify with anthropogenic climate change 3 , are rapidly emerging as forceful agents of disturbance with the capacity to restructure entire ecosystems and disrupt the provision of ecological goods and services in coming decades. © 2019, The Author(s), under exclusive licence to Springer Nature Limited

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    Pancreatic cancer 3D cell line organoids (CLOs) maintain the phenotypic characteristics of organoids and accurately reflect the cellular architecture and heterogeneity In vivo

    Get PDF
    Pancreatic cancer is a highly lethal disease. Therapeutic resistance to chemotherapy is a major cause of treatment failure and recurrence in pancreatic cancer. Organoids derived from cancer stem cells (CSC) are promising models for the advancement of personalised therapeutic responses to inform clinical decisions. However, scaling-up of 3D organoids for high-throughput screening is time-consuming and costly. Here, we successfully developed organoid-derived cell lines (2.5D) from 3D organoids; the cells were then expanded and recapitulated back into organoids known as cell line organoids (CLOs). The 2.5D lines were cultured long term into 2D established cell lines for downstream comparison analysis. Experimental characterisation of the models revealed that the proliferation of CLOs was slightly faster than that of parental organoids. The therapeutic response to chemotherapeutic agents in 3D CLOs and organoids showed a similar responsive profile. Compared to 3D CLOs and organoids, 2D cell lines tended to be less responsive to all the drugs tested. Stem cell marker expression was higher in either 3D CLOs or organoids compared to 2D cell lines. An in vivo tumorigenicity study found CLOs form tumours at a similar rate to organoids and retain enhanced CSC marker expression, indicating the plasticity of CSCs within the in vivo microenvironment

    Explanatory pluralism in the medical sciences: theory and practice

    Get PDF
    Explanatory pluralism is the view that the best form and level of explanation depends on the kind of question one seeks to answer by the explanation, and that in order to answer all questions in the best way possible, we need more than one form and level of explanation. In the first part of this article, we argue that explanatory pluralism holds for the medical sciences, at least in theory. However, in the second part of the article we show that medical research and practice is actually not fully and truly explanatory pluralist yet. Although the literature demonstrates a slowly growing interest in non-reductive explanations in medicine, the dominant approach in medicine is still methodologically reductionist. This implies that non-reductive explanations often do not get the attention they deserve. We argue that the field of medicine could benefit greatly by reconsidering its reductive tendencies and becoming fully and truly explanatory pluralist. Nonetheless, trying to achieve the right balance in the search for and application of reductive and non-reductive explanations will in any case be a difficult exercise
    corecore