127 research outputs found

    Perfluorophenyl azide functionalization of electrospun poly(para‐dioxanone)

    Get PDF
    Strategies to surface‐functionalize scaffolds by covalent binding of biologically active compounds are of fundamental interest to control the interactions between scaffolds and biomolecules or cells. Poly(para‐dioxanone) (PPDO) is a clinically established polymer that has shown potential as temporary implant, eg, for the reconstruction of the inferior vena cava, as a nonwoven fiber mesh. However, PPDO lacks suitable chemical groups for covalent functionalization. Furthermore, PPDO is highly sensitive to hydrolysis, reflected by short in vivo half‐life times and degradation during storage. Establishing a method for covalent functionalization without degradation of this hydrolyzable polymer is therefore important to enable the surface tailoring for tissue engineering applications. It was hypothesized that treatment of PPDO with an N‐hydroxysuccinimide ester group bearing perfluorophenyl azide (PFPA) under UV irradiation would allow efficient surface functionalization of the scaffold. X‐ray photoelectron spectroscopy and attenuated total reflectance Fourier‐transformed infrared spectroscopy investigation revealed the successful binding, while a gel permeation chromatography study showed that degradation did not occur under these conditions. Coupling of a rhodamine dye to the N‐hydroxysuccinimide esters on the surface of a PFPA‐functionalized scaffold via its amine linker showed a homogenous staining of the PPDO in laser confocal microscopy. The PFPA method is therefore applicable even to the surface functionalization of hydrolytically labile polymers, and it was demonstrated that PFPA chemistry may serve as a versatile tool for the (bio‐)functionalization of PPDO scaffolds

    Functionalizable coaxial PLLA/PDLA nanofibers with stereocomplexes at the internal interface

    Get PDF
    Multifunctionality of electrospun polylactic acid (PLA) nonwovens was generated by the morphological design of nanofibers. Coaxial fibers with a lower number average molar mass Mn PLLA core and a higher Mn PDLA shell form PDLA–PLLA stereocrystals at the interface, induced by annealing. In tensile tests under physiological conditions, the core–shell fibers with higher crystallinity (22% compared to 11–14%) had lower Young’s moduli E (9 ± 1 MPa) and lower elongation at break Δb (26 ± 3%) than PDLA alone (E = 31 ± 9 MPa, Δb = 80 ± 5%), which can be attributed to simultaneous crystallization and relaxation effects. Gelatin incorporated in the PDLA phase was presented on the outer surface providing a biointerface putatively favorable for cell adherence. Gelatin incorporation did not influence the crystallization behavior but slightly lowered Tg (60 → 54 °C). Employing exclusively polymers established in the clinic, multifunctionality was generated by design

    RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives

    Get PDF
    The tissue integration of synthetic polymers can be promoted by displaying RGD peptides at the biointerface with the objective of enhancing colonization of the material by endogenous cells. A firm but flexible attachment of the peptide to the polymer matrix, still allowing interaction with receptors, is therefore of interest. Here, the covalent coupling of flexible physical anchor groups, allowing for temporary immobilization on polymeric surfaces via hydrophobic or dipole–dipole interactions, to a RGD peptide was investigated. For this purpose, a stearate or an oligo(ethylene glycol) (OEG) was attached to GRGDS in 51–69% yield. The obtained RGD linker constructs were characterized by NMR, IR and MALDI-ToF mass spectrometry, revealing that the commercially available OEG and stearate linkers are in fact mixtures of similar compounds. The RGD linker constructs were co-electrospun with poly(p-dioxanone) (PPDO). After electrospinning, nitrogen could be detected on the surface of the PPDO fibers by X-ray photoelectron spectroscopy. The nitrogen content exceeded the calculated value for the homogeneous material mixture suggesting a pronounced presentation of the peptide on the fiber surface. Increasing amounts of RGD linker constructs in the electrospinning solution did not lead to a detection of an increased amount of peptide on the scaffold surface, suggesting inhomogeneous distribution of the peptide on the PPDO fiber surface. Human adipose-derived stem cells cultured on the patches showed similar viability as when cultured on PPDO containing pristine RGD. The fully characterized RGD linker constructs could serve as valuable tools for the further development of tissue-integrating polymeric scaffolds

    One step creation of multifunctional 3D architectured hydrogels inducing bone regeneration

    Get PDF
    Structured hydrogels showing form stability and elastic properties individually tailorable on different length scales are accessible in a one-step process. They support cell adhesion and differentiation and display growing pore size during degradation. In vivo experiments demonstrate their efficacy in biomaterial-induced bone regeneration, not requiring addition of cells or growth factors

    Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications

    Get PDF
    Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin’s multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered

    Advice on assistance and protection from the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons : Part 2. On preventing and treating health effects from acute, prolonged, and repeated nerve agent exposure, and the identification of medical countermeasures able to reduce or eliminate the longer term health effects of nerve agents

    Get PDF
    The Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) has provided advice in relation to the Chemical Weapons Convention on assistance and protection. We present the SAB’s response to a request from the OPCW Director-General in 2014 for information on the best practices for preventing and treating the health effects from acute, prolonged, and repeated organophosphorus nerve agent (NA) exposure. The report summarises pre- and post-exposure treatments, and developments in decontaminants and adsorbing materials, that at the time of the advice, were available for NAs. The updated information provided could assist medics and emergency responders unfamiliar with treatment and decontamination options related to exposure to NAs. The SAB recommended that developments in research on medical countermeasures and decontaminants for NAs should be monitored by the OPCW, and used in assistance and protection training courses and workshops organised through its capacity building programmes.Peer reviewe

    Advice from the Scientific Advisory Board of the Organisation for the Prohibition of Chemical Weapons on riot control agents in connection to the Chemical Weapons Convention

    Get PDF
    Compounds that cause powerful sensory irritation to humans were reviewed by the Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical Weapons (OPCW) in response to requests in 2014 and 2017 by the OPCW Director-General to advise which riot control agents (RCAs) might be subject to declaration under the Chemical Weapons Convention (the Convention). The chemical and toxicological properties of 60 chemicals identified from a survey by the OPCW of RCAs that had been researched or were available for purchase, and additional chemicals recognised by the SAB as having potential RCA applications, were considered. Only 17 of the 60 chemicals met the definition of a RCA under the Convention. These findings were provided to the States Parties of the Convention to inform the implementation of obligations pertaining to RCAs under this international chemical disarmament and non-proliferation treaty.Peer reviewe
    • 

    corecore