
Accepted Manuscript

Title: Advice on assistance and protection from the Scientific
Advisory Board of the Organisation for the Prohibition of
Chemical Weapons: Part 2. On preventing and treating health
effects from acute, prolonged, and repeated nerve agent
exposure, and the identification of medical countermeasures
able to reduce or eliminate the longer term health effects of
nerve agents

Authors: Christopher M. Timperley, Jonathan E. Forman,
Mohammad Abdollahi, Abdullah Saeed Al-Amri, Augustin
Baulig, Djafer Benachour, Veronica Borrett, Flerida A.
Cariño, Michael Geist, David Gonzalez, William Kane, Zrinka
Kovarik, Roberto Martı́nez-Álvarez, Nicia Maria Fusaro
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Kovarik Z, Martı́nez-Álvarez R, Fusaro Mourão NM, Neffe S, Raza SK, Rubaylo V,
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Running head: Treating the long-term effects of nerve agents 

 

 

 

Abstract 

The Scientific Advisory Board (SAB) of the Organisation for the Prohibition of Chemical 

Weapons (OPCW) has provided advice in relation to the Chemical Weapons Convention on 

assistance and protection. We present the SAB’s response to a request from the OPCW 

Director-General in 2014 for information on the best practices for preventing and treating the 

health effects from acute, prolonged, and repeated organophosphorus nerve agent (NA) 

exposure. The report summarises pre- and post-exposure treatments, and developments in 

decontaminants and adsorbing materials, that at the time of the advice, were available for 

NAs. The updated information provided could assist medics and emergency responders 
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unfamiliar with treatment and decontamination options related to exposure to NAs. The SAB 

recommended that developments in research on medical countermeasures and 

decontaminants for NAs should be monitored by the OPCW, and used in assistance and 

protection training courses and workshops organised through its capacity building 

programmes.  

 

Keywords: Bioscavenger; Chemical Warfare Agent; Chemical Weapons Convention; 

Decontaminant; Nerve Agent; Organisation for the Prohibition of Chemical Weapons. 

 

 

1. Introduction 

Upon joining the Chemical Weapons Convention (hereinafter “the Convention”), member 

nations (“States Parties”) commit to never develop, produce, otherwise acquire, stockpile, 

retain or use chemical weapons (OPCW, 1997). The Convention permits the development of 

national programmes for protection against chemical weapons, supported by the Organisation 

for the Prohibition of Chemical Weapons (OPCW), the implementing body of the 

Convention, headquartered in The Hague, the Netherlands. The States Parties to the 

Convention are required to provide assistance and protection to fellow Member States 

threatened by or attacked with chemical weapons, and a State Party may request this 

assistance and protection through the OPCW. Resources from a Voluntary Fund for 

Assistance, as well as individual offers of equipment and trained personnel, are available and 

a network of protection experts consult regularly on means to improve the capabilities of 

States Parties to respond to chemical incidents. Such assistance may include, but is not 

limited to, items such as detection and alarm systems, protective equipment, decontamination 

equipment, medical antidotes and treatments (OPCW, 2016a) and advice on protective 

measures (OPCW, 2017a, 2018a). The OPCW also has a rapid response and assistance 

capability that States Parties can call upon if required (OPCW, 2016b). 

The OPCW has a Scientific Advisory Board (SAB) comprised of 25 members appointed 

from all regions of the world that advises the OPCW Director-General on developments in 
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scientific and technological fields relevant to the Convention (OPCW, 2018b). This includes 

the provision of advice on technical matters related to international cooperation. At its 

Twentieth Session in June 2013, the Director-General requested the SAB to give advice on 

assistance and protection against chemical weapons (OPCW, 2013). The SAB provided the 

Director-General with a response (OPCW 2014a) that recommended pretreatments and post-

exposure treatments that are available for countering the toxic effects of nerve agent (NA) 

chemical warfare agents (CWAs). This advice forms the substance of Part 1 of this series of 

papers (Timperley et al., 2018a) and that text should be consulted in parallel. 

To capture insight on the long-term damage caused by CWAs, and emerging medical 

countermeasures to them, an additional question was introduced by the Director-General to 

the SAB at its Twenty-First Session in June 2014 (OPCW, 2014b). Then, in light of victims 

of chemical weapons undergoing medical care due to use of the organophosphorus nerve 

agent (NA) sarin in the Syrian Arab Republic (Fischer et al., 2016; Timperley et al., 2018b), 

there was a compelling need to understand better what could be done to mitigate the long 

term effects of CWAs, especially NAs, in humans. Such information would also be a 

valuable addition to the International Support Network for Victims of Chemical Weapons 

that was established by the OPCW in 2011 (OPCW, 2011, 2012). The SAB was thus 

requested to identify any emerging medical countermeasures which could reduce or eliminate 

the long-term health effects arising from acute, prolonged, and repeated exposure to NAs. 

This paper, the second of a series on medical countermeasures and treatment, contains the 

SAB's response provided to the Director-General and States Parties on 10 June 2015 (OPCW, 

2015a). It is augmented by the addition of extra background information and references. 

Adjuncts to traditional medical countermeasure approaches to NA poisoning, including 

neuroprotective agents and bioscavengers, along with methods of decontamination are 

described. The material in this paper assumes familiarity with the previous paper (Part 1: 

Timperley et al., 2018a) which described the medical care and treatment of injuries from 

blister agents and NAs along with experimental and clinical findings. 

Deducing the mechanisms underlying toxic syndromes associated with both classes of CWAs 

is an enduring task (Aas, 2003; Balali-Mood and Abdollahi, 2014; Costanzi et al., 2018; 

Myhrer and Aas, 2014; Myhrer et al., 2006, 2013, 2015; Timperley and Tattersall, 2015). 

This is especially true for organophosphorus (OP) compounds which can cause long-term 

neurological damage (Abdollahi and Karimi-Mojaheri, 2012; Akhgari et al., 2003; Balali-
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Mood and Balali-Mood, 2008; Brown and Brix, 1998; Karalleide et al., 2006; Hung et al., 

2015; Somani and Husain, 2000; Tattersall, 2018). 

1.1. Legal disclaimer 

This report contains information, guidelines, diagrams and other materials addressed to 

medical practitioners who are engaged in the treatment of casualties of chemical weapons. It 

is made available to the public for information purposes, but is not intended to be used by the 

public. All decisions regarding patient care must be made with a healthcare provider and 

consider the unique characteristics of each patient. The views and opinions expressed in this 

report and in the suggested reading materials are those of the authors and do not reflect the 

views of the OPCW. These materials are cited as a service to readers and do not imply 

endorsement by the OPCW or the individuals involved in the development of this report. The 

OPCW and any of the individuals involved in the development of this report are not 

responsible for the content of third party websites. The information contained herein is 

accurate to the best of the authors’ knowledge. However, neither the OPCW nor the authors 

shall be liable under any circumstances for the correctness, accuracy or comprehensiveness of 

such information, or for the consequences of its use. 

2. Late effects of organophosphorus compounds 

Poisoning from OP compounds produces three principal clinical syndromes: (a) acute 

cholinergic syndrome intermediate syndrome (IMS); and (c) OP-induced neuropathy 

(OPIDN) (Timperley and Tattersall, 2015; Lotti and Moretto, 2005). The acute cholinergic 

crisis develops within minutes to several hours after exposure, depending on the OP 

compound and the route of poisoning (Timperley et al., 2018a). Death can take place in a 

short time if life-threatening conditions, such as respiratory failure, are not treated rapidly and 

appropriately. OPIDN occurs 2-3 weeks following acute exposure to certain OP insecticides 

(Timperley and Tattersall, 2015). The clinical picture is usually a numbness and weakness of 

the lower extremities, followed by progressively ascending weakness of limb muscles. The 

IMS (Senanayake and Karalleide, 1987) occurs in the interval between the end of the acute 

cholinergic crisis and the onset of OPIDN. It is indicated by weakness and fatigue of skeletal 

muscles with fasciculation, leading to paralysis of the respiratory muscles, and is considered 

a major contributing factor to OP-related morbidity and mortality.  
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Neurotoxicity is the main late effect of OP compounds that can occur after an acute exposure 

(Mostafalou and Abdollahi, 2018). The IMS and OPIDN usually occur 24-96 hours and 1 to 

3 weeks after an acute exposure to OP compounds, respectively. The neuropathy can progress 

in months or years after acute and chronic exposure. Persistent inhibition of AChE is initially 

responsible for muscle weakness, but is not the only factor involved in the occurrence of the 

IMS or neuropathy. Therefore, the AChE assay cannot be a sensible index for determining 

nerve and muscle function impairment. IMS usually occurs after an acute cholinergic crisis, 

while a neuropathy may occur after acute and chronic exposures (Karami-Mohajeri et al., 

2014). Studies of acute OP poisoning in experimental animals have revealed that muscle 

necrosis is much more severe in the diaphragm compared to other skeletal muscles 

(Abdollahi and Karami-Mohajeri, 2012). 

Several mechanisms are involved in the etiology of the IMS. They include inhibition of 

acetylcholinesterase (AChE), muscle necrosis, down-regulation or desensitization of 

postsynaptic acetylcholine (ACh) receptors, a failure of presynaptic ACh release, and 

oxidative stress-associated myopathy. In this regard, other factors such as lipophilicity, 

duration of the existence of the main compound or its metabolites in the body, the potency of 

the compound in inhibiting the AChE, severity of influence on repetitive nerve stimulation, 

and type and frequency of the muscle lesions, also matter in the prognosis of the IMS. Plasma 

AChE of less than 200 units and a reduction of 30 Hz repetitive nerve stimulation response 

can help diagnose the IMS (Abdollahi and Karami-Mohajeri, 2012).  

It is well known that respiratory muscle dysfunction is one of the major causes of death in 

acute OP poisoning through muscular paralysis (Seeger et al., 2012). Thus, hypothetically, 

electromyography can help diagnosis but its value is uncertain. Electromyographical changes 

during the IMS include electrical stimulus-induced repetitive and decremental responses, 

tetanic fade, and a decrement-increment response at higher frequencies of repetitive nerve 

stimulation. Normal nerve conduction velocities and distal latency may be noted. The 

recurrent stimulation of nicotinic receptors through presynaptic feedback or desensitization of 

postsynaptic receptors may reduce the release of ACh (Karami-Mohajeri et al., 2014). 

Some of the toxic effect of OP compounds arises from mitochondrial oxidative 

phosphorylation dysfunction mediated through the inactivity of complexes I, II, III, IV and V 

and mitochondrial membrane damage. Reduced synthesis of adenosine triphosphate (ATP) or 

induction of its hydrolysis can cause the cellular energy deficit. Also, OP compounds can 
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damage mitochondrial antioxidant defences by overproducing reactive oxygen species, 

activating caspases and triggering cell death. This mitochondrial dysfunction is repaired by 

the use of antioxidants such as vitamins E and C, electron donors, and through increasing the 

cytosolic ATP level (Karami-Mohajeri et al., 2013). However, to elucidate many aspects of 

mitochondrial toxicity of OP chemicals, further studies are required. 

Some therapies are underway for the management of chronic neuropathies, especially ones 

related to the oxidative stress that is also evident in OP-induced chronic neuropathy. These 

therapies include taurine, acetyl-L-carnitine, alpha-lipoic acid, protein kinase C inhibitor 

(ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced 

glycation end-product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine 

pathway inhibitor (benfotiamine), and inhibitors of polyADP-ribose, polymerase 

(nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril) (Hosseini and 

Abdollahi, 2013).  

3. Adjunct agents and new trends in the treatment of nerve agent poisoning 

We now describe a range of drugs that have been tested experimentally for neuroprotective 

purposes in experimental animal models involving prior administration of NAs, sometimes in 

combination with traditional medical countermeasure drugs (e.g. atropine and an oxime). For 

further details of such traditional drug approaches to ameliorating poisoning by OP pesticides 

and NAs (structures of NAs were derived from pesticide research originally; Timperley, 

2000), see Part 1 of this series of papers. The chemical structures of some of the 

neuroprotective drugs now discussed appear in Figure 1. Further details on neuropathology 

and neuroprotective drugs in relation to the treatment of toxicity arising from exposure to 

NAs are available in recently published reviews (Moshiri et al., 2012; Tattersall, 2009; 

Timperley and Tattersall, 2015).  
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Figure 1. Structures of some of the neuroprotective agents tested to alleviate NA poisoning. 

 

3.1. Neuroprotective agents 

3.1.1. Gacyclidine 

Gacyclidine (GK-11) was studied in experimental and clinical trials for different 

neuroprotective indications (Bhagat et al., 2005; Hirbec et al., 2001). It is a new 

phencyclidine derivative that binds to N-methyl-D-aspartate (NMDA) receptors, and also to 

non-NMDA binding sites located in the cerebellum and on the dendritic tree of Purkinje cells. 

Gacyclidine prevents glutamate-induced neuronal death, reduces the size of lesions after 

traumatic brain injury (Smith et al., 2000), and enhances the neuroprotective activity of 

atropine, pralidoxime and diazepam in soman poisoning. The clinical findings and 

electroencephalography (EEG) recordings revealed that convulsions could be prevented in 

soman experiments using primates (Lallement et al., 1999a, 1999b). Optimal effects were 

achieved within 30 min of poisoning. Gacyclidine was useful in inhibiting neuropathological 

changes occurring 3 weeks after a soman challenge (Balali-Mood and Saber, 2012). 
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Unfortunately, gacyclidine production was stopped several years ago, and the drug is no 

longer available for experimental studies in animals or for clinical trials in humans due to 

patent rights. Ketamine, a weaker NMDA antagonist, with a large clinical use worldwide 

might be considered instead for the treatment of NA-induced refractory status epilepticus 

(Dhote et al., 2012) (see Section 3.1.3. for more information on ketamine as a possible 

neuroprotectant). 

3.1.2. Tezampanel 

Tezampanel (LY293558) is an anti-glutamatergic agent with a specific affinity for kainate 

sub-type receptors (Ornstein et al., 1993). In experimental animals it reduced the length of 

status epilepticus and neuropathy induced by soman (Figueiredo et al., 2011b). The best 

results were achieved when it was administered within 1 h after exposure. Tezampanel can 

prevent brain pathology and is applicable to the paediatric population (Miller et al., 2015). 

3.1.3. Ketamine 

Ketamine is a cyclohexanone derivative that blocks NMDA receptors non-competitively. A 

study with soman-poisoned guinea pigs showed that ketamine effectively stopped the 

seizures and reduced related brain damage when administered 1 h after exposure (Dorandeu 

et al., 2005, 2013). Co-administration of benzodiazepines provided a synergistic effect, and 

when used with atropine, an additional neuroprotective effect (suppression of neutrophil 

granulocyte infiltration and partial suppression of glial activity) (Dhote et al., 2012). The 

additional benefit of ketamine and atropine was explained by NMDA antagonism, possible 

reduction of glutamate release, and the anticholinergic effect of atropine. Similar benefits 

have been observed in mice and rats. However, ketamine is not an approved drug for the 

treatment of NA victims. 

3.1.4. Huperzine A  

Huperzine A is an alkaloid purified from Chinese club moss that is used to treat Alzheimer's 

disease and myasthenia gravis (Zangara, 2003; Zhi et al., 1995). It inhibits AChE reversibly, 

similar to donepezil, rivastigmine or galantamine (Aracava, 2009). A beneficial effect of 

reducing the severity of seizures and prevention of status epilepticus after NA poisoning, by 
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blocking the NMDA receptors (Coleman et al., 2008; Zhang et al., 2001), has been shown in 

animal experiments (Aracava et al., 2009; Garcia et al., 2009; Grunwald et al., 1994). 

3.1.5. Caramiphen 

Caramiphen is an antimuscarinic drug with antiglutamergic and gabaergic properties. Its 

therapeutic efficacy against OP-poisoning as a prophylactic and post-exposure treatment has 

been confirmed in several experimental studies (Figueiredo, 2011a; Raveh et al., 2002, 2014). 

3.1.6. Galantamine 

Galantamine (GAL) inhibits AChE and potentiates ACh-induced currents in brain neurons 

(Aracava, 2009). It also potentiates the activity of NMDA receptors, an action which is 

partially responsible for the improvement of neurocognitive function in patients with 

Alzheimer's disease. In contrast to pyridostigmine and physostigmine that also inhibit 

BuChE, it should help preserve the scavenging capacity of plasma BuChE for OP 

compounds. It crosses the blood-brain barrier, protecting the brain AChE from OP-induced 

irreversible inhibition. Magnetic resonance imaging revealed that galantamine, administered 

30 min prior to exposure of guinea pigs to a lethal dose of soman, prevented brain damage 

(Gullapalli et al., 2010). Galantamine is absorbed rapidly with absolute oral bioavailability 

between 80% and 100%. It has a half-life of 7 h. Peak inhibition of AChE was achieved ~1 h 

after a single oral dose of 8 mg in some healthy volunteers. In one study, performed in guinea 

pigs challenged with 16.8 μg/kg VX (2 × LD50), GAL hydrobromide antagonised VX-

induced lethality, impairment of muscle tension, and EEG changes (Hilmas et al., 2009). 

Optimal clinical effect was found with 10 mg/kg GAL. It did not alter seizure onset induced 

by VX, but significantly decreased seizure duration when administered as a post-exposure 

treatment against 2 × LD50 VX. 

3.1.7. Penehyclidine hydrochloride 

The anticholinergic agent penehyclidine hydrochloride (Niu et al., 1990) has been used 

clinically for treating poisoning by organophosphorus pesticides. Previous studies confirmed 

its ability to cross the blood-brain barrier and antagonise muscarinic and nicotinic receptors 

in the brain (Li et al., 2003). Penehyclidine hydrochloride was able to treat ongoing seizures 
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and had a better neuroprotective effect if administered soon after seizure onset in soman 

poisoning in experimental animals (Wang et al. 2005). 

3.2. Treatments involving inorganic salts 

Treatments involving administration of sodium hydrogen carbonate or magnesium sulfate 

have been investigated for amelioration of OP-poisoning and are discussed next.  

3.2.1. Sodium hydrogen carbonate and blood alkalinisation 

Sodium hydrogen carbonate has been explored as a means of increasing blood alkalinity to 

accelerate the hydrolysis of OP molecules in vivo (Antonijvic et al., 2002; Nurulain, 2012). 

The effects of high doses of sodium hydrogen carbonate (5 milliequivalent/kg (mEq/kg) in 1 

h, followed by 5 mEq/kg/day) were assessed (Vučinić et al., 2009). Adjustment of the dose 

according to the arterial blood gas analysis was necessary. Increasing one unit of pH was 

accompanied by a 10-fold increase in OP hydrolysis, and alkalinisation products of NAs such 

as those from soman were less toxic. Hence, blood alkalinisation may be beneficial in NA 

poisoning. The proposed mechanism involves better control of cardiotoxicity, increased bio-

availability of oximes (Buckley et al., 2011), increased atropine activity, and/or a direct effect 

of sodium hydrogen carbonate on neuromuscular function. The administration of sodium 

hydrogen carbonate is not yet established as a standard procedure. 

 

3.2.2. Magnesium sulfate 

The mechanism of action of magnesium sulfate is inhibition of ACh release through blocking 

calcium channels in the central nervous system (CNS) and at peripheral sympathetic and 

parasympathetic synapses (Fuchs-Buder, 1996). Its efficacy in the treatment of acute OP 

poisoning has been evaluated in several studies: these have shown decreased mortality and 

reduced overstimulation of the CNS due to NMDA receptor activation (Basher and Rahman, 

2013; Eddleston et al., 2008). Doses of 4-16 g of magnesium sulfate were assessed and no 

side effects were observed (Pajoumand, 2004). However, there is still insufficient evidence to 

recommend the routine use of magnesium sulfate for treating NA casualties. 

3.3. Treatments involving antioxidants 
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Besides the inhibition of AChE, the mechanism of OP compound poisoning possibly includes 

induction of oxidative stress and generation of free oxygen radicals (Balali-Mood et al., 2006, 

2012; Moshiri et al., 2012), indicated by the increased activity of catalase, superoxide 

dismutase, glutathione peroxidase, and the concentration of malondialdehyde in red blood 

cells and the liver as a biomarker of oxidative stress (Hosseini and Abdollahi, 2013). Chronic 

toxicity studies have revealed an increased level of oxidative stress biomarkers as well as 

increased DNA damage. A beneficial effect of vitamin E and N-acetyl-L-cysteine has been 

demonstrated in experimental studies. However, there is still insufficient evidence to 

recommend the routine use of drugs that ameliorate oxidative stress in NA casualties. 

3.4. Treatments involving protective bioscavengers 

New treatments to counter NA poisoning should provide reduced lethality, reverse the 

toxicity following exposure, and help eliminate the necessity for further medical intervention. 

The need to start treatment within 1 min after exposure to be effective against poisoning by 

all OP compounds has prompted the development of pretreatment therapy, such as 

bioscavengers (Mann et al., 2018; Moshiri et al., 2012; Mumford et al., 2011, 2013; Rice et 

al., 2016, Masson and Nachon, 2017). Bioscavengers are enzymes, antibodies, or other 

chemicals that sequester and neutralise toxic OP compounds before they reach their 

biological targets (Figure 2). 

If enzymes are to be used as therapeutic agents, they should: 

(a) have a large spectrum of activity versus different NAs and a rapid activity; 

(b) have a suitable retention time in circulation (ideally 11-15 days); 

(c) be available in sufficient concentration to be effective; 

(d) have no immunogenic properties; and 

(e) be available at a reasonable cost. 

The classes of available bioscavengers available are: 
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(a) Stoichiometric bioscavengers - cholinesterases (ChEs), especially butyrylcholinesterase 

(BuChE) (Boyko et al., 2019; Nicolet et al., 2003), and carboxylesterases (CaEs) (Jokanović 

et al., 1996; Fleming et al., 2007) which react stoichiometrically with OP compounds. 

(b) “Pseudocatalytic bioscavengers” that combine BuChE or AChE, that have scavenging 

properties and bind NAs, and an efficient oxime reactivator, establish cycles of enzyme 

inhibition and reactivation, enabling the degradation of the NAs (Kovarik et al., 2015; Maček 

Hrvat et al., 2016; Radić et al., 2013).  

(c) Catalytic bioscavengers (OP hydrolase, OP anhydrase, and paraoxonase (PON) enzymes 

(Ben-David et al., 2012)) that trap and degrade neurotoxic OP compounds rendering them 

non-toxic (Blum et al., 2008; Briseño-Roa et al., 2006, 2011a, 2011b; Masson et al., 2016; 

Timperley et al., 2006; Worek et al., 2016). Also, cyclodextrins modified with oxime 

functionality are able to encapsulate certain NAs in aqueous media and catalyse their 

hydrolysis to low toxicity products (Zengerle et al., 2011) including the NA acids (Barucki et 

al., 2003; Timperley et al., 2001). 

3.4.1. Stoichiometric bioscavengers 

When used as a pretreatment in mice, fetal bovine serum AChE provided complete protection 

against VX, lower protection against soman, and in conjunction with atropine and 2-PAM in 

a post-exposure treatment, protection against VX and soman (Wolfe et al., 1987). In one 

study on rhesus monkeys, equine serum BuChE protected against 2 × LD50 of soman, and 4 × 

LD50 when atropine was used in the post-exposure treatment (Maxwell et al., 1992). 

Plasma-derived human BuChE (pHuBuChE) scavenging properties against different NAs 

were evaluated in mice, rats (Brandeis, 1993), and rhesus monkeys, and showed a linear 

correlation between the concentration of pHuBuChE and the level of protection against 

soman, sarin and VX. Prophylactic pHuBuChE has several advantages for human use such 

as: rapid reaction with a broad spectrum of OP compounds, a good retention time in 

circulation (Chilukuri et al., 2005), and no immunogenic activity. After extrapolation of data 

from animal experiments to humans, a dose of 200 mg of pHuBuChE has been estimated as a 

prophylaxis for humans in the case of exposure to 2 to 5 × LD50 of soman. For mass 

production of pHuBuChE two methods are currently available: purification of the enzyme 

from human plasma (Cohn Fraction IV) developed by Baxter Health Care Corporation or the 
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use of recombinant human enzyme produced in the milk of transgenic goats ('Protexia', 

developed by Nexia) (Cerasoli et al., 2005). Recently an investigation focused on identifying 

a safer source of HuBuChE. Possible sources of recombinant HuBuChE (rHuBuChE) are 

transgenic plants, transgenic animals, transfected larvae, adenovirus or algae, and rHuBuChE 

can also be derived in cell lines. 

CaE is synthesised in the liver and afterwards is present in the circulation in different 

concentrations in mammals. However, humans do not express CaE in their circulation and 

further studies are needed before considering CaE for use as a bioscavenger (Duysen et al., 

2011). 

Fresh frozen plasma (FFP) is a blood fraction prepared by removing the cellular components 

by apheresis. It contains clotting factors, proteins, and enzymes, and is used when these 

components are deficient or lost. It is hypothesised that in OP insecticide poisoning BuChE 

from FFP will sequester the poison present in the blood and remove it from circulation 

(Vučinić et al., 2013). However, the results of limited studies are controversial and there is no 

general agreement that it can be recommended for routine use for the treatment of exposure 

to OP compounds. 
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Figure 2. Classes of bioscavengers: (a) stoichiometric bioscavengers react with with NAs to 

form phosphylated adducts with loss of fluoride (G agents) or the N,N-

dialkylethylaminothiolate (V agents) leaving group; (b) pseudocatalytic bioscavengers form 

similar adducts with NAs, but the addition of oximes allows the enzyme to regenerate and the 

NA to be converted into a non-toxic product; and (c) catalytic bioscavengers react with NAs, 
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release them as non-toxic products and regenerate the original enzyme, which can continue to 

function as a bioscavenger. The protein structures depicted were from the Protein Data Bank, 

and their indentifiers, in parentheses, are: butyrylcholinesterase (1P0I) (Nicolet et al., 2003), 

carboxylesterase (2HRQ) (Fleming et al., 2007), paraoxonase-1 (3SRE) (Ben-David et al., 

2012), and phosphotriesterase (1PSC) (Benning et al., 1995).  

 

3.4.2. Polysialylation of recombinant human BuChE (rHuBuChE) for long-acting NA 

bioscavengers 

Chemical polysialylation of rHuBuChE has been used to produce bioscavengers that are 

stable in the bloodstream (Ilyushin et al., 2013). The CHO-based expression system for 

rHuBuChE resulted in a significant increase in the amount of functional bioscavenger that 

was stable in the blood, with better pharmacokinetic properties, and protection against 4.2 × 

LD50 of O-isobutyl S-2-(diethylamino)ethyl methylphosphonothiolate (VR). 

4. Methods for decontamination of nerve agents 

Decontamination of CWAs is generally based on three methods: (i) mechanical, (ii) physical, 

and (iii) chemical (Mondloch et al., 2015; Rosseinsky et al., 2015; Singh et al., 2010). It was 

described in a separate report by a member of the SAB (Martínez-Álvarez, 2014) and is 

covered in several reviews that should also be consulted (Jang et al., 2015; Yang et al., 1992). 

A decontaminant should be appropriate for the nature of the surface being decontaminated, 

for example bare skin, covered skin, or an inanimate object.  

4.1. Oxidiser gels 

To detoxify a NA, a formulation with a gelling agent (e.g. silica, alumina or aluminosilicate 

clays) and oxidising agent (aqueous sodium hypochlorite) can be prepared at the site of 

decontamination, and applied to the contaminated area (Farahipour et al., 2011). This 

approach is suitable for field implementation.  
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4.2. Bacterial phosphotriesterase 

Phosphotriesterase (PTE) is an enzyme isolated from the bacterium Pseudomonas diminuta 

(Benning et al., 1995). Modified by biotechnological processes, with the redesign of the 

active site, engineered PTE enzymes are useful for detoxifying NAs in vivo (Blum et al., 

2008; Briseño-Roa et al., 2006, 2011a, 2011b; Timperley et al., 2006; Worek et al., 2016). 

4.3. Nanostructured solids and heterogeneous catalysts 

Administration of reactive sorbent materials as oxidation promoters or photocatalysts that are 

activated by sunlight may be considered a new strategy for individual protection and 

decontamination in cases of exposure to CWAs (Wagner, 2010). Oxides of Zn, Ti, Fe, Mn, 

Mg, Al, Zr or Cu have a very high surface area and defective crystalline edges - corners and 

sites that are more reactive than the bulk material. These can be used to decompose NAs into 

non-toxic by-products. Nanomaterials, in particular ZnO-TiO2 nanofibres obtained by 

electrospinning, are suitable for incorporation into textiles and clothes. Catalytically-active 

sites on the surface of zinc titanate fibres enable the slow hydrolysis of some NAs. 

4.4. Nanosized metal oxides as CWA decontaminants 

Having a high surface area, potent adsorbent properties and reactivity towards many CWAs, 

nanosized particles of MgO, Al2O3 and CaO are considered to be promising sorbent materials 

for removing NAs from contaminated surfaces and degrading them, leading to the formation 

of non-toxic products (Wagner et al., 2010). More recently, nanostructured clays and oxides 

for catalytic decontamination of CWAs have been reported (OPCW, 2017b). 

4.5. Nanomaterials as active components in barrier creams 

Identification of nanomaterials that can be used as reactive components of an active 

destructive material to treat a chemically-contaminated area is important (Braue et al., 2005). 

Topical skin protectants have been investigated since 1917, when different soaps and 

ointments were first used; after significant research since 2000, one has been approved by the 

US Food and Drug Administration (FDA), namely Skin Exposure Reduction Paste Against 

Chemical Warfare Agents (SERPACWA) (Braue, 2005, 2011a-b; FDA, 2018; Timperley et 

al., 2018a). Excellent barrier properties are provided by this for protecting against soman and 

VX due to the presence of fine polytetrafluoroethylene (PTFE) solid dispersed in a 
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fluorinated polyether. Improvement of SERPACWA, by adjusting the amount of active 

nanomaterials, perfluorinated polyether oil, PTFE resin and other additives, increases the 

resistance against sulfur mustard (FDA, 2018).  

5. Summary of response to the Director General’s request 

The responses to the Director-General’s questions by the SAB are now provided: 

(a) Identify best practices for preventing and treating the health effects that arise from acute, 

prolonged and repeated organophosphorus NA exposure 

In the case of prolonged NA exposure, it is necessary to administer the adequate antidotal 

treatment consisting of a reactivator of NA-inhibited AChE, an anticholinergic drug to 

counteract the overstimulation of peripheral and central cholinergic muscarinic receptors, and 

an anticonvulsive drug to prevent centrally-mediated seizures and subsequent tonic-clonic 

convulsions, until the exposure to NA ceases. This treatment must continue as long as NA-

induced clinical and laboratory signs and symptoms are visible. The oxime drugs should be 

administered at a dose regimen that allows the clinical improvement and the normalisation of 

AChE activity or until no further improvement is achieved (Timperley et al., 2018a). 

To regulate repeated administration of reactivators of NA-inhibited AChE, it is important to 

measure the activity of cholinesterases in the blood (erythrocyte AChE and plasma BuChE) 

including a test of reactivation to evaluate the reactivating efficacy of the chosen oxime. 

Anticholinergic drugs should be administered until the signs and symptoms of atropinisation 

appear. Atropinisation should be visible for a longer time (within days). The anticonvulsive 

drugs should be given until the signs and symptoms of disturbed neuromuscular transmission 

and centrally-mediated seizures are visible. To regulate the repeated administration of 

anticonvulsive drugs, it is important to monitor the function of the central and peripheral 

nervous system, including EEG examination and muscle electromyography. Antidotal 

treatment should be supported by symptomatic treatment, including oxygenation, assisted 

ventilation, and the prevention of acidosis and infection, according to the severity of 

poisoning. 

In the case of repeated NA exposure, each exposure must be treated the same way as the first 

exposure using adequate antidotes and supportive symptomatic drugs. It is necessary to note 
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that humans can be more sensitive to the acute toxicity of NAs in the case of repeated 

exposure because of the lower activity of AChE in the peripheral nervous system and CNS 

due to previous NA exposures (although changes of the activity of blood ChEs should not be 

very pronounced, monitoring of their activity is necessary). The prognosis of repeated 

exposure to NA is more severe and the antidotal and supportive treatment must be as 

intensive as possible. 

(b) Identify any emerging medical countermeasures, intended for use at the point of exposure 

that can reduce or eliminate longer term health effects arising from acute, prolonged and 

repeated organophosphorus NA exposure. 

The crucial approach - how to reduce or eliminate longer term health effects arising from 

acute, prolonged and repeated NA exposure - is to treat correctly the acute phase of poisoning 

(acute cholinergic crisis). Only rapidly administered adequate antidotal treatment consisting 

of a reactivator of NA-inhibited AChE (preferably the oxime HI-6 or obidoxime), an 

anticholinergic drug (preferably atropine), and an anticonvulsive drug (preferably a 

benzodiazepine), can stop the overstimulation of peripheral and central cholinergic receptors 

and subsequent clinical signs and symptoms. 

Delayed and prolonged effects of NAs are mostly caused by damage to the CNS (frontal 

cortex, piriform cortex, hippocampus, and amygdala) through centrally-mediated seizures 

(due to prolonged overstimulation of central cholinergic muscarinic receptors and subsequent 

activation of glutamatergic receptors). To stop these seizures, it is necessary to prevent 

prolonged stimulation of muscarinic receptors by a centrally-acting anticholinergic drug 

(preferably scopolamine or benactyzine) and an anticonvulsive drug (preferably selected from 

diazepam, alprazolam, or midazolam during the initial seizures; with addition of other drugs 

such as ketamine during refractory status epilepticus that can only be properly treated in 

hospital). The antidotes must be administered as soon as possible to prevent delayed and 

prolonged health effects of NAs. If adequate medical countermeasures are insufficiently 

effective or are not realised sufficiently rapidly after the onset of NA poisoning, longer term 

health effects (especially neurological and including symptoms such as increased excitability 

and a deficit of cognitive function) emerge. In that case, the treatment is insufficient to 

eliminate such damage. However symptomatic and supportive treatment should be 

recommended in this situation. 
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The development of modern drugs for neuropathies is a need that must be taken into account 

by those researching treatments for OP-poisoning. Due to the potential dangers of 

intermediate syndrome following such poisoning, physicians should be aware of the 

occurrence of delayed neurotoxic effects, and should perform neuromuscular studies to rule 

out other causes and predict the severity of OP intoxication. 

(c) The role of prophylactic antidotes against NAs in the prevention of longer term health 

effects arising from acute, prolonged and repeated exposure to organophosphorus NA 

compounds. 

Prophylactic antidotes against NAs have been developed and introduced into military service 

to increase the resistance of the body against the acute toxicity of NAs and also to increase 

the efficacy of post-exposure antidotal treatment of NA poisoning. Prophylactic antidotes to 

NAs should be administered in response to the threat of exposure to NAs. Generally, the 

combination of the administration of prophylactic antidotes (pretreatment) and post-exposure 

adequate antidote treatment increases the probability of avoiding the delayed and prolonged 

effects of NAs resulting from CNS damage caused by centrally-mediated seizures (via 

protracted overstimulation of central cholinergic muscarinic receptors and the subsequent 

activation of glutamatergic receptors in the CNS). 

Pyridostigmine bromide is a commonly advocated prophylactic antidote against NA 

poisoning (Timperley et al., 2018a). Unfortunately, it has several drawbacks. Its dosage is 

limited due to the risk of adverse effects and it cannot penetrate the blood-brain barrier. Thus, 

pyridostigmine can only protect peripheral AChE against irreversible inhibition by NAs. 

Therefore, a combined oral prophylaxis called PANPAL was developed, in the Czech 

Republic (Bajgar, 2009; Kassa, 2006). Clinical approval from the FDA and European 

Medicines Agency (EMA) would be necessary prior a general recommendation. PANPAL 

consists of a reversible AChE inhibitor (pyridostigmine) to protect peripheral AChE from 

irreversible inhibition by NAs and two centrally-acting anticholinergic drugs (benactyzine 

and trihexyphenidyl; chemical structures provided in Timperley et al., 2018a) to increase 

slightly the dose of pyridostigmine bromide and to antagonise the overstimulation of central 

cholinergic muscarinic receptors. This combination introduced into the Czech Army shows 

higher efficacy than pyridostigmine alone to avoid or at least diminish the acute toxicity and 

to prevent delayed and long-lasting health effects from acute, prolonged and repeated 

exposure to NAs (Bajgar, 2009; Kassa, 2006). 
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Another approach to increase the resistance of humans to NAs and the efficacy of post-

exposure antidotal treatment of poisoning is to administer reactivators of NA-inhibited AChE 

in advance (Timperley et al., 2018a). In the Czech Republic, a special prophylactic antidote 

called TRANSANT (involving the oxime HI-6) was developed and introduced into service in 

the Czech Army (Bajgar, 2009). Clinical approval by the FDA and EMA would be necessary 

prior a general recommendation. This makes it possible to administer percutaneously the 

oxime HI-6 before exposure to NAs. The presence of HI-6 in the bloodstream enables the 

immediate reactivation of NA-inhibited AChE. The combination of both prophylactic 

antidotal means (PANPAL and TRANSANT) represents an effective prevention that is able 

to increase markedly the resistance of humans and prevent the centrally-mediated seizures, as 

well as subsequent delayed and prolonged health effects from acute, prolonged and repeated 

exposure to NAs. 

A recent alternative approach to the development of prophylaxis in the case of threat of 

exposure to NAs is the administration of stoichiometric modified BuChE or catalytic 

bioscavengers (modified paraoxonase or phosphotriesterase) able to bind or hydrolyse NAs 

before they reach the target of their acute toxicity (AChE in the peripheral and central 

nervous system). This type of prophylaxis is valuable, but until now has not been prepared 

for clinical use. However, it represents a promising approach to preventing the longer-term 

health effects arising from acute, prolonged and repeated NA exposure. 

6. Concluding remarks 

This paper concludes the advice on assistance and protection given by the SAB on 

organophosphorus nerve agents to the Director-General and States Parties of the Convention 

in June 2015 (OPCW, 2015a). The findings of the SAB were presented to the delegations of 

States Parties on 8 July 2015 by Dr Slavica Vučinić (OPCW, 2015b) in a lecture held under 

the OPCWs Science for Diplomats initiative. The advice served as the foundation for the 

organisation of an international workshop on “Chemical Warfare Agents: Toxicity, 

Emergency Response and Medical Countermeasures” held in Paris, France, from 26 to 27 

September 2016, that was realised by the OPCW in cooperation with the French Secrétariat 

Général de la Défense et de la Sécurité Nationale (OPCW, 2016c, 2016d).  
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 Work of the Organisation of the Prohibition of Chemical Weapons (OPCW) is outlined 

 Advice on assistance and protection from OPCW Scientific Advisory Board is provided 

 Advice addresses medical care and treatment of longer term injuries from nerve agents 

 Scientific literature on the topics is reviewed and over 130 references included 

 This advice will better inform toxicologists, medics and emergency responders 
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