3,952 research outputs found
Cluster structures within Fermionic Molecular Dynamics
The many-body states in an extended Fermionic Molecular Dynamics approach are
flexible enough to allow the description of nuclei with shell model nature as
well as nuclei with cluster and halo structures. Different many-body
configurations are obtained by minimizing the energy under constraints on
collective variables like radius, dipole, quadrupole and octupole deformations.
In the sense of the Generator Coordinate Method we perform variation after
projection and multiconfiguration calculations. The same effective interaction
derived from realistic interactions by means of the Unitary Correlation
Operator Method is used for all nuclei. Aspects of the shell model and cluster
nature of the ground and excited states of C12 are discussed. To understand
energies and radii of neutron-rich He isotopes the soft-dipole mode is found to
be important.Comment: 5 pages, proceedings of the 8th International conference on
Clustering Aspects of Nuclear Structure and Dynamics, Nov. 2003, Nara, Japan,
to be published in Nucl. Phys.
Dynamical phase diagram of Gaussian BEC wave packets in optical lattices
We study the dynamics of self-trapping in Bose-Einstein condensates (BECs)
loaded in deep optical lattices with Gaussian initial conditions, when the
dynamics is well described by the Discrete Nonlinear Schr\"odinger Equation
(DNLS). In the literature an approximate dynamical phase diagram based on a
variational approach was introduced to distinguish different dynamical regimes:
diffusion, self-trapping and moving breathers. However, we find that the actual
DNLS dynamics shows a completely different diagram than the variational
prediction. We numerically calculate a detailed dynamical phase diagram
accurately describing the different dynamical regimes. It exhibits a complex
structure which can readily be tested in current experiments in BECs in optical
lattices and in optical waveguide arrays. Moreover, we derive an explicit
theoretical estimate for the transition to self-trapping in excellent agreement
with our numerical findings, which may be a valuable guide as well for future
studies on a quantum dynamical phase diagram based on the Bose-Hubbard
Hamiltonian
Nucleon-nucleon potentials in phase-space representation
A phase-space representation of nuclear interactions, which depends on the
distance and relative momentum of the nucleons, is
presented. A method is developed that permits to extract the interaction
from antisymmetrized matrix elements given in a spherical
basis with angular momentum quantum numbers, either in momentum or coordinate
space representation. This representation visualizes in an intuitive way the
non-local behavior introduced by cutoffs in momentum space or renormalization
procedures that are used to adapt the interaction to low momentum many-body
Hilbert spaces, as done in the unitary correlation operator method or with the
similarity renormalization group. It allows to develop intuition about the
various interactions and illustrates how the softened interactions reduce the
short-range repulsion in favor of non-locality or momentum dependence while
keeping the scattering phase shifts invariant. It also reveals that these
effective interactions can have undesired complicated momentum dependencies at
momenta around and above the Fermi momentum. Properties, similarities and
differences of the phase-space representations of the Argonne and the N3LO
chiral potential, and their UCOM and SRG derivatives are discussed
From nucleon-nucleon interaction matrix elements in momentum space to an operator representation
Starting from the matrix elements of the nucleon-nucleon interaction in
momentum space we present a method to derive an operator representation with a
minimal set of operators that is required to provide an optimal description of
the partial waves with low angular momentum. As a first application we use this
method to obtain an operator representation for the Argonne potential
transformed by means of the unitary correlation operator method and discuss the
necessity of including momentum dependent operators. The resulting operator
representation leads to the same results as the original momentum space matrix
elements when applied to the two-nucleon system and various light nuclei. For
applications in fermionic and antisymmetrized molecular dynamics, where an
operator representation of a soft but realistic effective interaction is
indispensable, a simplified version using a reduced set of operators is given
Satellite microwave observations of soil moisture variations
The electrically scanning microwave radiometer (ESMR) on the Nimbus 5 satellite was used to observe microwave emissions from vegetated and soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and the Great Salt Lake Desert in Utah. Analysis of microwave brightness temperatures (T sub B) and antecedent rainfall over these areas provided a way to monitor variations of near-surface soil moisture. Because vegetation absorbs microwave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil moisture measurements can only be obtained over bare or sparsely vegetated soil. In general T sub B increased during rainfree periods as evaporation of water and drying of the surface soil occurs, and drops in T sub B are experienced after significant rainfall events wet the soil. Microwave observations from space are limited to coarse resolutions (10-25 km), but it may be possible in regions with sparse vegetation cover to estimate soil moisture conditions on a watershed or agricultural district basis, particularly since daily observations can be obtained
Nuclear Structure based on Correlated Realistic Nucleon-Nucleon Potentials
We present a novel scheme for nuclear structure calculations based on
realistic nucleon-nucleon potentials. The essential ingredient is the explicit
treatment of the dominant interaction-induced correlations by means of the
Unitary Correlation Operator Method (UCOM). Short-range central and tensor
correlations are imprinted into simple, uncorrelated many-body states through a
state-independent unitary transformation. Applying the unitary transformation
to the realistic Hamiltonian leads to a correlated, low-momentum interaction,
well suited for all kinds of many-body models, e.g., Hartree-Fock or
shell-model. We employ the correlated interaction, supplemented by a
phenomenological correction to account for genuine three-body forces, in the
framework of variational calculations with antisymmetrised Gaussian trial
states (Fermionic Molecular Dynamics). Ground state properties of nuclei up to
mass numbers A<~60 are discussed. Binding energies, charge radii, and charge
distributions are in good agreement with experimental data. We perform angular
momentum projections of the intrinsically deformed variational states to
extract rotational spectra.Comment: 32 pages, 15 figure
Global analysis reveals differential regulation of mRNA decay in human induced pluripotent stem cells
2013 Fall.Includes bibliographical references.Induced Pluripotent Stem (iPS) cells are able to proliferate indefinitely while maintaining the capacity for unlimited differentiation and these properties are reflected by global changes in gene expression required for reprogramming of differentiated cells. Although the rate of transcription is an important regulator of steady-state mRNA levels, mRNA decay also plays a significant role in modulating the expression of cell-specific genes. The contribution of regulated mRNA decay towards establishing and maintaining pluripotency is largely unknown. To address this, we sought to determine global mRNA decay rates in iPS cells and the genetically-matched fibroblasts (HFFs) they were derived from. Using a microarray based approach, we determined half-lives for 5,481 mRNAs in both cell lines and identified three classes of mRNAs whose decay is differentially regulated in iPS cells compared to HFFs. We found that replication-dependent histone mRNAs are more abundant and more stable in iPS cells, resulting in increased histone protein abundances. This up-regulation of histone expression may facilitate the unique chromatin dynamics of pluripotent cells. A large set of C2H2 ZNF mRNAs are also stabilized in iPS cells compared to HFFs, possibly through reduced expression of miRNAs that target their coding regions. As many of these mRNAs encode transcriptional repressors, stabilization of these transcripts may support the overall increased expression of C2H2 ZNF transcription factors in early embryogenesis. Finally, we found that mRNAs containing C-rich elements in their 3'UTR are destabilized in iPS cells compared to HFFs and many of these mRNAs encode factors important for development. Interestingly, we also identified the Poly(C)-Binding Protein (PCBP) family as differentially regulated in iPS cells and investigated their possible involvement in regulation of the mRNAs in our dataset identified as destabilized in iPS cells and having C-rich 3'UTR elements. Thus, we identified several interesting classes of mRNAs whose decay is differentially regulated in iPS cells compared to HFFs and our results highlight the importance of post-transcriptional control in stem cell gene expression. Coordinated control of mRNA decay is evident in pluripotency and characterization of the mechanisms involved would further contribute to our limited understanding of pluripotent gene expression and possibly identify additional targets for reprogramming
- …