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SATELLITE MICROWAVE OBSERVATIONS

OF SOIL MOISTURE VARIATIONS

T. J. Schmugge, A. Rango and R. Neff

ABSTRACT: The Elf atrically Scanning Microwave Radiometer (ESMR) on the

Nimbus 5 satellite was used to observe microwave emissions from vegetated and

soil surfaces over an Illinois-Indiana study area, the Mississippi Valley, and

the Great Salt Lake Desert in Utah. Analysis of microwave brightness tempera-

tures (TB ) and antecedent rainfall over these areas provided a way to monitor

variations of near-surface soil moisture. Because vegetation absorbs micro-

wave emission from the soil at the 1.55 cm wavelength of ESMR, relative soil

moisture measurements can only be obtained over bare or sparsely vegetated

soil. In general T B increases during rainfree periods as evaporation of water

and drying of the surface soil occurs, and drops in T B are experienced after

significant rainfall events wet the soil. Microwave observations from space are

limited to coarse resolutions (10-25 km), but it may be possible in regions with

sparse vegetation cover to estimate soil moisture conditions on a watershed or

agricultural district basis, particularly since daily observations can be obtained.

Further applications to agriculture and water resources need to be explored.

(KEY TERMS: soil moisture; microwave emission; satellites; agriculture;

water resources.)
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OF SOIL MOISTURE VARIATIONS

T. J. Schmugge, A. Rango and R. Neff t

INTRODUCTION

The Nimbus-5 satellite launched on 12 December 1972 carried a new sensor

capable of receiving thermal radiation from the earth's surface in the microwave

portion of the spectrum. This instrument called the Electrically Scanning Micro-

wave Radiometer (ESMR) receives the thermal radiation at a wavelength of 1.55 cm.

The radiometer scans +500 about the nadir with a spatial resolution of 25 km at

the nadir and is therefore capable of mapping the radiation from a 2500 km swath.

The satellite is in a sun synchronous orbit at a nominal altitude of 1100 km. The

equator crossings are local noon and midnight. In this paper we will describe

some of the observations made with this instrument that indicate the potential

for using microwaves for water resources monitoring. The microwave region

of the spectrum is well suited for water resources applications because of the

large contrast between the dielectric properties of water and solid materials.

This contrast is apparent when the emissivities for these materials are examined.

Table 1 is a listing of emissivities at the 1.55 cm wavelength for several materi-

als, calculated using Fresnel equations for the reflectivity of an electromagnetic

wave at a smooth dielectric boundary.

Respectively, Research Physicist and Research Hydrologist, NASA/Goddard Space Flight Center, Greenbelt,
Maryland 20771, and Program Manager, Nimbus-ATS Data Utilization Center, GE/MATSCO, Beltsville,
Maryland 20705.

y
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Because of surface roughness effects, the emissivity of naturally occurring

soil surfaces will be somewhat higher than in Table 1. This variation of emis-

sivity has been observed by a radiometer operating at the 1.55 cm wavelength

from an aircraft platform (Sohmugge, unpublished data, 1975). Figure 1 is a

plot of aircraft observed brightness temperature (T B ), i.e. , the product of

emissivity and surface temperature, versus soil moisture. These data were

obtained over bare agricultural fields near Phoenix, Arizona and in the Imperial

Valley of Southern California. The soil moisture values are expressed as the

percent of field capacity in an attempt to normalize the effect of different soils.

There to a 50-80 K variation of T B between dry and saturated soils. These air-

craft observations indicate the sensitivity of the radiometer to soil moisture

variations.

Similar direct comparisons of T B with ground measurements of soil moisture

would be very difficult with the Nimbus-5 satellite due to the fact that soil mois-

ture measurements would be needed over large areas. Because these data are

not commonly available, we have compared the satellite values of T B to the ante-

cedent rainfall of a particular area. It is reasoned that recent rainfall totals are

indicative of moisture variations in the near-surface soil which is the layer for

which the Nimbus-5 radiometer data are most pertinent. Monitoring of anted-

deft rainfall and T B variations was conducted for three separate cases and areas;

a series of heavy rainfall events over central Illinois and Indiana during June 1973,

the heavy rain in the Mississippi Valley in the winter of 1973, and a continuing
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series of observations of the effect of rain on T B over the Salt Desert in Utah.

The last case has been described elsewhere (Ulaby et al., 1975) and will only

be briefly discussed here.

CENTRAL ILLMIS — INDIANA CASE

During scanning of the Nimbus-5 ESMR data, a low T B feature was observed

during the daylight pass (approximately 12:00 noon) over central Illinois and

Lauiana on 6 June 1973. Figure 2a is a T. contour map for the area; the lowest

temperatures (<220K) were about 50-60K less than the temperatures observed

at the same time further to the west over Iowa. This range of T B values is

consistent with the aircraft results presented in Figure 1. A comparison with

the total rainfall received in the study area during six days preceding the Nimbus-5

pass (Fig. 2b) indicated that the region with lower brightness temperatures had

received greater than 7.5 cm of rain during this period. Upon further examina-

tion it was observed that there were other sections of the bi-state area that had

received equally heavy rains but whose T B values were about 20 K higher or

about 240 K.

The reason for this difference was clarified after Landsat-1 imagery for the

area was studied. The Landsat-1 data were obtained from adjacent passes over

Indiana and Illinois on 9 and 10 June 1973. False color infrared images were

interpreted with respect to the relative amount of vegetation cover and the results

are presented in Figure 2c. The comparison of the three maps indicates that
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the area with the lowest values of T B was nearly free of vegetation (due to an

extremely late planting of crops) whereas the areas in the southern part of the

state which had also received heavy rain possessed a dense vegetation cover.

Thus it appears that vegetative cover over wet soil can significantly modify the

microwave emission so as to raise a normally low T B . In this same study area

there was another period of heavy rain during 15-20 June. Figure 3 presents

the contour maps of Ts on 20 June, the antecedent rainfall for the i5-20 June

period, and the Landsat land-cover analysis. Again the correlation of low T B,

heavy rain, and nearly bare ground is consistent with the earlier pass.

In order to examine a rain-free period, the contours of T B for the daytime

pass on 10 June are presented in Figure 4. The weather during the period 6-10

June was clear and dry and would most likely result in significant evaporation of

water from the nearly bare soil, thus drying out the near-surface layer. This is

reflected in the higher T B (>280 K) observed over the nearly bare soil areas

which previously had received heavy rain during the first week of June (areas

getting more than 7.5 em of rain during this period are shaded in Figure 4). This

increase of TB when the surface layer of the soil dries has been observed for

irrigated fields in the aircraft experiment previously discussed. The magnitude

of the increase (about 60 K) is also in good agreement with the results from that

same aircraft experiment. Another interesting feature is that the lowest Ts is

now observed over the densely vegetated area in the southern part of the bi-state

area. The T B in this southern area only increased 10-20K from 6 to 10 June.
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Although the suppression of a large increase in T s in this southern area may be

due in part to the retention of more moisture, it appears more likely that a dense

vegetation cover is an effective screen that produces a reduced microwave sensi-

tivity to soil moisture during both wet and dry periods, at least at the 1.55 cm

wavelength.

Examination of synoptic weather conditions from 1 to 20 June 1973 indicates

that on the dates of microwave analysis (6, 10, and 20 June) no precipitation and

little, if any, possible cloud contamination of T s patterns could have occurred.

On 10 June conditions were clear over the entire Illinois-Indiana area. On 6 and

20 June similar cold fronts had passed through the area and were located on the

Indiana-Ohio border. No rain and generally clear sky conditions existed over

the entire study area at the time of satellite overpass (about 12:00 noon).

MISSISSIPPI VALLEY CASE

On 22 January 1973 a region of low Ts was also observed over the Mississippi

Valley with Nimbus-5 ESMR. The contours of T B are schematically presented

in Figure 5. This region of low T B (shaded area) approximately corresponds to

an outwash aquifer, where unconsolidated sand and gravel deposits are capable

of storing large amounts of ground-water. The upland areas surrounding the

aquifer are predominantly hardwood forests while the aquifer area is primarily

agricultural land which would generally have minimal amounts of vegetation in

the January time frame. Similar to the Illinois-Indiana case, it was hypothe-

sized that lowered T B values observed in the valley resulted from saturated soil
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conditions in response to recent rains. To study this further the average value

of Ts and the daily average rainfall for the area were examined. The area of

interest is shown in Figure 6 which is a map showing the principal rivers and

the boundaries (shaded areas) between the uplands and the aquifer area. The

study area was divided into two parts: (1) a northern region from the confluence

of the Ohio and Mississippi Rivers down to Memphis, Tennessee and extending

from the Mississippi River to the western upland boundary, and (2) a southern

region along the Mississippi River from Memphis to Vicksburg, Mississippi

stretching from the river to the eastern upland boundary. The average values

of TB for the two regions were calculated about every other day when the satellite

track was approximately centered over the area so that only data within 1:30° of

nadir were used. The results for the northern region are shown in Figure 7 and

compared with the average daily rainfall. The average rainfall over the northern

region was determined by averaging 0800 data from 28 stations. In general low

values of T B were observed for the period immediately after a heavy rainfall,

p . g. the sharp drop in T B observed around 20 January. This was generally fol-

lowed by a gradial warming trend as the area dried out. The anomalous values

(e. g. the value on 7 January) were days on which precipitation was occurring

during the satellite overpass. The effect of rain over oceans has been to raise

observed T B above the low value observed for water (T s — 130 K). For example

a T B as high as 250K over the Gulf of Mexico was observed for rainfall rates

on the order 10 mm/hr (Wtlheit, et al., 1975). There would also be a rise in
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T$ over land when the To of the ground is less than the temperature of the rain

cloud such as would be the case for wet ground. Estimates of rainfall from ESMR

are not easy to obtain over land because the variable and unknown T $ of the ground

makes it difficult to determine the emission from the rain. Thus for our pur-

poses the rain obscures the surface and causes several of the anomalous values

observed in Figures 7 and 8 (southern region).

Conversely, the effects of non-raining clouds are much less severe because

of the smaller size of the liquid water droplets (less than 50 1im radius) in these

situations. Table 2 is a listing of the effects for three cloud cases calculated

using a model developed by Wilheit (unpublished data, 1975). T B at the satellite

was determined assuming a surface temperature of 270 K and surface emissivities

of 0.7 and 0. 9, wet and dry soil conditions, for the mid-latitude winter standard

atmosphere (Valley, 1965). The effect of clouds is seen to be primarily depen-

dent on the amount of liquid water present in the cloud and it is only for the

drizzle situation that cloud effects become serious enough to significantly de-

crease the contrast between warm and cold targets. Therefore, we would expect

that during rainfree periods the T B measured by the satellite radiometer is within

about 10 K of that at the surface. The effects calculated for the same situations

using the summer atmosphere were qualitatively eiinilar but of a somewhat

greater magnitude due to the larger amount of water vapor in the atmosphere.
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The results for the southern region using 20 rainfall stations are presented

in Figure 8. Again there is the sharp drop in T. observed after the heavy rains

of 22 January 1973. This is followed by a gradual rise until 15 February during

which there were several additional rains. For the last half of February, which

was dry, there is a sharp rise in T o , presumably due to the drying out of the

surface layer of the soil. Although possibly due to some climatic a"d/or vegeta-

-ion factors unique to the southern region, the lack of a decrease of T B in resporse

to	 rains of 5-9 January is not presently understood. Aside from this instance,

ti.,^: results indicate that ESMR responds to large soil moisture changes when

they occur in this region over a sufficiently wide area.

GREAT SALT LAKE DESERT CASE

The hydrology of the desert area west and south-%, • st of the Great Salt Lake

is distinctly different from the previous two situations. The desert is an inter-

mountain basin which generally drains into the Great Salt Lake by means of

sub-surface water movement. The water table is located less than one meter

beneath the surface near the center of the desert and between 2 and 3 meters deep

at the margins (Nolan, 1928). The values of Te observed over the desert in June

1973 were significantly lower than the surrounding area. This result was observed

with both ESMR and the 2.2 em and 21 cm radiometers on board Skylab. A com-

plete discussion of microwave observations is documented by Ulaby, et al. (1975)

and only the ESMR observations pertinent to the previously described studies in

the nlinots-Diana and Mississippi Valley areas are presented here.
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The contours of TB from the daytime pass on 5 June 1973 for the Great Salt

Lake Desert are presented in Figure 9. The minimum T B over the desert was

less than 220 K or about 60 K cooler than the surrounding areas. For the follow-

ing night pass the minimum over the Salt Desert remained about the same but the

TB of the surrounding desert decreased by about 20 K, to less than 260 K. The

minimum values of TB for the Salt Desert from the daytime passes for an 18-

month period from June 1973 to December 1974 were subsequently studied. These

data were compared with the value of T B for a spot 60 km west of the desert

which indicated the seasonal variations to be expected for the terrain surrounding

the desert area (Fig. 10). In general, T B for this reference location varies

rather smoothly from a maximum of 280 K in July and August down to a minimum

of 240K for January and February and appears to repeat from one year to the

next. The minimum T B over the Great Salt Lake Desert followed a similar sort

of seasonal variation with its maximum occurring in July and August. However,

the minima were in November in response to the Autumn rains during both years.

There is a significant difference in the level of T B for the summers of 1973 and

1974. The minimum temperatures observed over the Great Salt Lake Desert in

the Summer of 1974 were 20-30 K higher than those observed during the Summer

of 1973. The rainfall during the Summer of 1974 was only 50 percent of normal

while in 1973 it was slightly above normal. The average monthly rainfall for

eight stations surrounding the basin is shown on the bottom of Figure 10 and

clearly indicates this difference in rainfall for the two Summers. The response

L:. the heavier Autumn rains of November, 1973 and October, 1974 is indicated,
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and, in particular, the lowest TB was observed on 18 November 1973 when an

average of more than 1 cm of rain was recorded at the eight stations. In this

case, it appears that the radiometer may be responding to a combination of surface

water resultir. g from the rain and a connected rise ir. the level cf the water table.

DISCUSSION AND CONCLUSIONS

It has been shown in the Illinois-Indiana case tW satellite microwave obser-

vations can be used to monitor the relative amount of moisture in the soil, with

some qualifications. First, because any significant amount of vegetation absorbs

the microwave emission from the soil at the 1.55 cm wavelength, the target area

must be bare soil or covered with only low density vegetation for meaningful

measurements to result. Second, only moisture in the near surface layer (0-2 cm

approximately) of the soil can be monitored at 1.55 cm. Longer wavelengths

should provide the capability for observing moisture variations at greater depth.

The monitoring of rainfall and microwave brightness temperature (T B ) over

nearly bare agricultural land in the Mississippi Valley for two months in 1973

showed that T B increases were experienced during relatively dry periods and

drops in T B occurred soon after rainfall events. In a somewhat different situa-

tion, T B and rainfall over the Great Salt Lake Desert were monitored for two

years. Fluctuations in TB were related to rainfall events, but the radiometer

appeared to be responding to a probable rise in the shallow groundwater table

beneath the desert surface. In general the satellite T B observations provide

a means for detecting changes in moisture levels at and beneath the soil surface
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depending on wavelength. This capability provides a new dimension to the

monitoring of water resources with remote sensing.

Because the angular resolution of the passive microwave instruments is

determined by the physical size of the receiving antennas, the optimum attainable

spatial resolution in the near future will be on the order of 1-10 km, depending

on wavelength. This resolution limitation of course restricts the applicability

of this technique to observation of large area events such as those described in

this paper. Although this coarse resolution will prevent the acquisition of soil

moisture conditions for individual fields, it may be possible to estimate soil

moisture levels on a watershed or agricultural district basis, particularly if

daily oLf,ervations are employed. These observations will only be possible before

the planting of crops and during the early growing season when vegetation cover

is sparse. If longer microwave wavelengths (>10 cm) are used, it Is speculated

that increased transmission through the vegetation canopy will occur. These

early season observations should be of great value in deciding on the time and

type of crop planting and for general early season irrigation scheduling when the

root zone is still in close proximity to the surface. Additionally, these kinds

of data have the potential for predicting the location of pest outbreaks (Idso, et

al. , 1975) because of the sensitivity of pest development to relative soil moisture

levels.

The potential value of the microwave observations for soil moisture ac-

counting applications and promising initial results merit further investigations
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into the effects of vegetation on microwave emission and the microwave sensi-

tivity to soil moisture at longer wavelengths. It is possible that by combining

various levels of aircraft and satellite platforms and both passive and active

microwave instruments, a truly effective system for the detailed monitoring

of soil moisture will be feasible in the future.
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Table 1

Emissivities of Several Selected Natural Materials (1.55 cm)

Material	 Emissivity

Water at 20°C	 0.40

Dry Soil
	

0.94

Wet Soil	 0.60
(above field capacity)

Pure Ice	 0.92

16
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Table 2

Calculated brightness temperature, T B , for several weather conditions. The
density of liquid water (p) for 1 km thick stratus clouds is given for reference.

Satellite T B in Kelvins cm of Liquid
Condition	 Tran8missivity	 Water in

e = 0.7	 e = 0.9	 Column

TB at Surface	 189	 243

Clear	 0.97	 193	 244	 0

Stratus	 0.96	 194	 245	 0.01
(P = 0.1 g/m )

Dense Stratus	 0.95	 196	 245	 0.025(p = 0.25 g/m )

Drizzle	 0.82	 211	 250	 0.18(0.2 mm/hr)
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FIGURE CAPTIONS

Figure 1. The Relationship Between Aircraft (600 m Altitude) Observed Values

of Microwave Brightness Temperatures and Soil Moisture for Bare

Agricultural Fields Near Phoenix, Arizona in Early March 1972

Figure 2. Comparison of NIL7Jms 5 ESMR Microwave Brightness Temperatures,

Antecedent Rainfall, and Cover Type Over the Illinois-Indiana Area

in Early June

Figure 3. Comparison of Nimbus 5 ESMR Microwave Brightness Temperatures,

Antecedent Rainfall, and Cover Type Over the Illinois-Indiana Area in

Late June

Figure 4. Comparison of Nimbus 5 ESMR Microwave Brightness Temperatures

and Cover Type Over the Illinois-Indiana Area in Mid-June.

Figure 5. A Microwave Brightness Temperature Contour Map of the Lower

Mississippi Valley on 22 January 1973 (Contour Interval is 10K).

Figure 6. A Map of the Mississippi Valley Study Area Showing the Boundaries

Between the Alluvial Aquifer and the Surrounding Uplands as Shaded

Areas

Figure 7. Comparison of ESMR Microwave Brightness Temperatures with

Average Daily Rainfall for the Northern Mississippi Valley Test

Area
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Figure 8. Comparison of ESMR Microwave Brightness Temperatures with

Average Daily Rainfall for the Southern Mississippi Valley Test

Area

Figure 9. ESMR Microwave Brightness Temperature Contours Over the Great

Salt Lake Desert Test Site on 5 June 1973 (Ulaby, et al., 1975) .

Figure 10. Temporal Variations of the Minimum Recorded ESMR Brightness

Temperature Over the Great Salt Lake Desert (X) Compared with

the ESMR Brightness Temperature of the Reference Point Outside

the Desert (0) Indicated in Figure 9 (Ulaby, et al., 1975)
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Average Daily Rainfall for the Northern Mississippi Valley Test Area
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