4 research outputs found

    The M\"obius Domain Wall Fermion Algorithm

    Full text link
    We present a review of the properties of generalized domain wall Fermions, based on a (real) M\"obius transformation on the Wilson overlap kernel, discussing their algorithmic efficiency, the degree of explicit chiral violations measured by the residual mass (mresm_{res}) and the Ward-Takahashi identities. The M\"obius class interpolates between Shamir's domain wall operator and Bori\c{c}i's domain wall implementation of Neuberger's overlap operator without increasing the number of Dirac applications per conjugate gradient iteration. A new scaling parameter (α\alpha) reduces chiral violations at finite fifth dimension (LsL_s) but yields exactly the same overlap action in the limit Ls→∞L_s \rightarrow \infty. Through the use of 4d Red/Black preconditioning and optimal tuning for the scaling α(Ls)\alpha(L_s), we show that chiral symmetry violations are typically reduced by an order of magnitude at fixed LsL_s. At large LsL_s we argue that the observed scaling for mres=O(1/Ls)m_{res} = O(1/L_s) for Shamir is replaced by mres=O(1/Ls2)m_{res} = O(1/L_s^2) for the properly tuned M\"obius algorithm with α=O(Ls)\alpha = O(L_s)Comment: 59 pages, 11 figure

    The eta ' signal from partially quenched Wilson fermions

    Full text link
    We present new results from our ongoing study of flavor singlet pseudoscalar mesons in QCD. Our approach is based on (a) performing truncated eigenmode expansions for the hairpin diagram and (b) incorporating the ground state contribution for the connected meson propagator. First, we explain how the computations can be substantially improved by even-odd preconditioning. We extend previous results on early mass plateauing in the eta' channel of two-flavor full QCD with degenerate sea and valence quarks to the partially quenched situation. We find that early mass plateau formation persists in the partially quenched situation.Comment: Lattice2002(spectrum), 3 pages, 5 figure
    corecore