87 research outputs found

    Mate choice for nonadditive genetic benefits and the maintenance of genetic diversity in song sparrows

    Get PDF
    The lek paradox asserts that strong directional selection via female choice should deplete additive genetic variation in fitness and consequently any benefit to females expressing the preference. Recently, we have provided a novel resolution to the paradox by showing that nonadditive genetic effects such as overdominance can be inherited from parent to offspring, and populations with females that express a mating preference for outbred males maintain higher genetic variation than populations with females that mate randomly. Here, we test our dynamic model using empirical data previously published from a small island population of song sparrows (Melospiza melodia). The model assumes that fitness and male trait expression display overdominance effects. The results demonstrate that female choice for outbred males mediated by directional selection on song repertoire size provides a heritable benefit to offspring through reduced inbreeding depression. Within the population, we estimate the heritability of the inbreeding coefficient to be 0.18 +/- 0.08 (SD). Furthermore, we show that mate choice for outbred males increases fitness-related genetic variation in the population by 12% and thereby reduces inbreeding depression by 1% per generation in typical years and upwards of 15% in severe years. Thus, mate choice may help to stave off population extinction in this and other small populations

    Adaptation of a mouse Doppler echocardiograph system for assessing cardiac function and thermal performance in a juvenile salmonid

    Get PDF
    Measures of cardiac performance are pertinent to the study of thermal physiology and exercise in teleosts, particularly as they pertain to migration success. Increased heart rate, stroke volume and cardiac output have previously been linked to improved swimming performance and increased upper thermal tolerance in anadromous salmonids. To assess thermal performance in fishes, it has become commonplace to measure the response of maximum heart rate to warming using electrocardiograms. However, electrocardiograms do not provide insight into the hemodynamic characteristics of heart function that can impact whole-animal performance. Doppler echocardiography is a popular tool used to examine live animal processes, including real-time cardiac function. This method allows for nonsurgical measurements of blood flow velocity through the heart and has been used to detect abnormalities in cardiovascular function, particularly in mammals. Here, we show how a mouse Doppler echocardiograph system can be adapted for use in a juvenile salmonid over a range of temperatures and timeframes. Using this compact, noninvasive system, we measured maximum heart rate, atrioventricular (AV) blood flow velocity, the early flow-atrial flow ratio and stroke distance in juvenile Atlantic salmon (Salmo salar) during acute warming. Using histologically determined measures of AV valve area, we show how stroke distance measurements obtained with this system can be used to calculate ventricular inflow volume and approximate cardiac output. Further, we show how this Doppler system can be used to determine cardiorespiratory thresholds for thermal performance, which are increasingly being used to predict the consequences that warming water temperatures will have on migratory fishes

    Transcriptome response of Atlantic salmon (Salmo salar) to competition with ecologically similar non-native species

    Get PDF
    Non-native species may be introduced either intentionally or unintentionally, and their impact can range from benign to highly disruptive. Non-native salmonids were introduced into Lake Ontario, Canada, to provide recreational fishing opportunities; however, the establishment of those species has been proposed as a significant barrier to the reintroduction of native Atlantic salmon (Salmo salar) due to intense interspecific competition. In this study, we compared population differences of Atlantic salmon in transcriptome response to interspecific competition. We reared Atlantic salmon from two populations (LaHave River and Sebago Lake) with fish of each of three non-native salmonids (Chinook salmon Oncorhynchus tshawytscha, rainbow trout O. mykiss, and brown trout S. trutta) in artificial streams. We used RNA-seq to assess transcriptome differences between the Atlantic salmon populations and the responses of these populations to the interspecific competition treatments after 10 months of competition in the stream tanks. We found that population differences in gene expression were generally greater than the effects of interspecific competition. Interestingly, we found that the two Atlantic salmon populations exhibited similar responses to interspecific competition based on functional gene ontologies, but the specific genes within those ontologies were different. Our transcriptome analyses suggest that the most stressful competitor (as measured by the highest number of differentially expressed genes) differs between the two study populations. Our transcriptome characterization highlights the importance of source population selection for conservation applications, as organisms with different evolutionary histories can possess different transcriptional responses to the same biotic stressors. The results also indicate that generalized predictions of the response of native species to interactions with introduced species may not be appropriate without incorporating potential population-specific response to introduced species

    Assortative mating but no evidence of genetic divergence in a species characterized by a trophic polymorphism

    Get PDF
    Disruptive selection is a process that can result in multiple sub-groups within a population, referred to as diversification. Foraging related divergence has been described in many taxa, but many questions remain about the contribution of such divergence to reproductive isolation and potentially sympatric speciation. Here we use stable isotope analysis of diet and morphological analysis of body shape to examine phenotypic divergence between littoral and pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We then examine reproductive isolation between ecomorphs by comparing the isotopic compositions of nesting males to eggs from their nests (a proxy for maternal diet), and use nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support the presence of distinct foraging ecomorphs in this population and indicate that there is significant positive assortative mating based on diet. We did not find evidence of genetic divergence between ecomorphs, however, indicating that isolation is either relatively recent or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms by which natural and sexual selection contribute to divergence, prior to the occurrence of sympatric speciation

    Emergent Trophic Interactions Following the Chinook Salmon Invasion of Patagonia

    Get PDF
    In their native range, Pacific salmon (Oncorhynchus spp.) have strong interactions with a multitude of species due to the annual pulse of marine-derived nutrients that they deliver to streams and forests when they spawn and die. Over the past few decades, Chinook salmon (Oncorhynchus tshawytscha) has established non-native populations throughout the Patagonia region of southern South America. Here, we provide the first assessment of the pathways through which salmon-derived nutrients enter stream and forest food webs in Patagonia by surveying multiple streams in southern Chile to identify invertebrate and vertebrate consumers of salmon carcasses and summarizing all documented trophic interactions of Chinook salmon in Patagonia. Blowflies (Calliphoridae) were the dominant colonizer of carcasses in the riparian zone, and midge flies (Chironomidae) were the most common invertebrate on submerged carcasses. Camera trap monitoring in the riparian zone revealed consumption of carcasses or carcass-associated invertebrates by the insectivorous passerine bird “chucao” (Scelorchilis rubecula), small rodents (black rat Rattus rattus, house mouse Mus musculus, and/or colilargo Oligoryzomys longicaudatus), the South American fox “culpeo” (Lycalopex culpaeus), and the invasive American mink (Neovison vison). A mink was filmed transferring a carcass from stream to streambank, indicating that vertebrate scavenging likely increases the degree to which marine-derived nutrients enter terrestrial food webs. The native taxa that consume salmon are closely related to species that benefit from salmon consumption in North America, suggesting that the pathways of salmon nutrient incorporation in North American food webs have functionally re-emerged in South America. Similarly, non-native trout (Oncorhynchus mykiss and Salmo trutta) and mink consume salmon in Patagonia, and their eco-evolutionary history of coexistence with salmon could mean that they are preadapted for salmon consumption and could thus be key beneficiaries of this invasion. Expanded monitoring of the abundance and impacts of salmon will be vital for understanding how these novel inputs of marine-derived nutrients alter Patagonian food webs

    Harmful Elements in Estuarine and Coastal Systems

    Get PDF
    Estuaries and coastal zones are dynamic transitional systems which provide many economic and ecological benefits to humans, but also are an ideal habitat for other organisms as well. These areas are becoming contaminated by various anthropogenic activities due to a quick economic growth and urbanization. This chapter explores the sources, chemical speciation, sediment accumulation and removal mechanisms of the harmful elements in estuarine and coastal seawaters. It also describes the effects of toxic elements on aquatic flora and fauna. Finally, the toxic element pollution of the Venice Lagoon, a transitional water body located in the northeastern part of Italy, is discussed as a case study, by presenting the procedures adopted to measure the extent of the pollution, the impacts on organisms and the restoration activities

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Increased performance of offspring sired by parasitic males in bluegill sunfish

    No full text
    Males of many species are characterized by alternative mating tactics. In bluegill sunfish (Lepomis macrochirus), some males delay maturation and become "parentals" while other males mature precociously and become "cuckolders." Parentals use an overt, territorial mating tactic, defending a nest and courting females. Cuckolders instead use a sneaking tactic to parasitize parentals. It has previously been shown that parentals that are heavily cuckolded provide less care to their young, yet females do not appear to discriminate against cuckolders, and they may actually release more eggs when a cuckolder is present than when spawning only with a parental. Here I examined growth rate of fry of known paternity through the yolk-sac stage of development using complementary laboratory and field studies to assess a potential indirect benefit for females that mate with cuckolders. Comparison of maternal half-siblings sired in vitro shows that cuckolder offspring grow faster and to a larger size than parental offspring while feeding endogenously on their yolk sac. Because both food resource and maternal genes are equivalent across treatments, these data indicate a genetic difference in growth between the two male life histories. In the field, fry from nests that have proportionately more cuckolder offspring are larger when they emerge from the nest. This increased size can lead to threefold higher survivorship for cuckolder offspring than parental offspring from Hydra canadensis predation, a major predator of bluegill fry. These results are discussed in the context of mate choice for direct and indirect benefits and in the context of the evolution of alternative mating tactics. Copyright 2004.bluegill sunfish; good genes; growth rate; indirect benefits; Lepomis macrochirus; mate choice; mating systems

    Polyandry and alternative mating tactics

    No full text
    Many species in the animal kingdom are characterized by alternative mating tactics (AMTs) within a sex. In males, such tactics include mate guarding versus sneaking behaviours, or territorial versus female mimicry. Although AMTs can occur in either sex, they have been most commonly described in males. This sex bias may, in part, reflect the increased opportunity for sexual selection that typically exists in males, which can result in a higher probability that AMTs evolve in that sex. Consequently, females and polyandry can play a pivotal role in governing the reproductive success associated with male AMTs and in the evolutionary dynamics of the tactics. In this review, we discuss polyandry and the evolution of AMTs. First, we define AMTs and review game theoretical and quantitative genetic approaches used to model their evolution. Second, we review several examples of AMTs, highlighting the roles that genes and environment play in phenotype expression and development of the tactics, as well as empirical approaches to differentiating among the mechanisms. Third, ecological and genetic constraints to the evolution of AMTs are discussed. Fourth, we speculate on why female AMTs are less reported on in the literature than male tactics. Fifth, we examine the effects of AMTs on breeding outcomes and female fitness, and as a source, and possibly also a consequence, of sexual conflict. We conclude by suggesting a new model for the evolution of AMTs that incorporates both environmental and genetic effects, and discuss some future avenues of research
    • …
    corecore