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Abstract 

Disruptive selection is a process that can result in multiple sub-groups within a population, 

referred to as diversification. Foraging related divergence has been described in many taxa, 

but many questions remain about the contribution of such divergence to reproductive 

isolation and potentially sympatric speciation. Here we use stable isotope analysis of diet and 

morphological analysis of body shape to examine phenotypic divergence between littoral and 

pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We 

then examine reproductive isolation between ecomorphs by comparing the isotopic 

compositions of nesting males to eggs from their nests (a proxy for maternal diet), and use 

nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support 

the presence of distinct foraging ecomorphs in this population and indicate that there is 

significant positive assortative mating based on diet. We did not find evidence of genetic 

divergence between ecomorphs, however, indicating that isolation is either relatively recent 

or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our 

findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms 

by which natural and sexual selection contribute to divergence, prior to the occurrence of 

sympatric speciation. 

 

Keywords: Fish, Morphometrics, Natural selection, Sexual selection, Speciation 
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Introduction 

Speciation is the evolutionary process ultimately responsible for the tremendous 

biological diversity that exists today. Not surprisingly, biologists have placed considerable 

emphasis on understanding the conditions and mechanisms behind speciation. Traditionally, 

speciation has been thought to occur almost exclusively in allopatry, i.e. when groups are 

isolated by geographic barriers (e.g. islands and mountain ranges) resulting in genetic 

divergence between populations through a combination of natural selection for local 

environmental conditions and passive genetic drift (Mayr, 1963; Thorpe et al., 2010; Blair et 

al., 2013); however, speciation can also occur in sympatry, i.e. without geographic isolation 

(Bolnick, 2011; Thibert-Plante & Hendry, 2011). The process of divergence in sympatry is 

described as occurring along a “speciation continuum”, ranging from a relatively 

homogeneous population to reproductively isolated sister species, and is generally based on 

the mechanisms of (1) disruptive natural selection (e.g. negative frequency-dependent) that 

result in multiple phenotypes, and (2) reproductive isolation between phenotypes, which lead 

to (3) genetic differentiation between phenotypes (Hendry et al., 2009; Seehausen & Wagner, 

2014). Consequently, understanding the ecological and behavioural mechanisms that 

contribute to phenotypic divergence at different points along the continuum, and the 

conditions under which this divergence leads to sympatric speciation, is of considerable 

interest. 

Foraging ecology is an important source of phenotypic divergence within many 

populations, often mediated through both intra- and interspecific resource competition 

(Schluter, 1996; Siwertsson et al., 2010). There are typically trade-offs such that generalist 

foragers, which consume a variety of prey items, are at a competitive disadvantage as 

compared to specialists, which consume a sub-set of the available prey items (Schluter, 1995; 

Rueffler et al., 2006). When specialists have an advantage in acquiring or processing specific 
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food items, there can be disruptive selection within species for foraging phenotypes that 

specialize on different resources (Ackermann & Doebeli, 2004; Bernays et al., 2004; 

Svanbäck & Eklöv, 2004). The resulting foraging “ecomorphs” contribute to phenotypic 

divergence within populations, and may thus be an important step towards divergence and 

potentially sympatric speciation; however, for divergent selection within a continuous 

environment to result in speciation there must also be a mechanism of reproductive isolation 

that disrupts gene flow between ecomorphs, such as assortative mating. Positive assortative 

mating, i.e. an increased likelihood to mate with phenotypically similar individuals, reduces 

the overall gene flow between ecomorphs and the number of intermediate individuals that 

will have lower overall fitness (Bank et al., 2012; Jiang et al., 2013). If pre-mating isolation 

through assortative mating is maintained for a sufficient period of time other reproductive 

barriers, e.g. post-mating isolation, may develop resulting in the completion of speciation. 

Assortative mating can be a “passive” process when, for example, disruptive selection 

changes habitat use or the timing of reproduction between ecomorphs; e.g. apple maggot fly 

(Rhagoletis pomonella; (Feder et al., 1994; Filchak et al., 2000). Alternatively, assortative 

mating can be an “active” component of sexual selection when individuals show distinct 

behavioural mate choice preferences; e.g. colour-based mate choice in African Great Lake 

cichlids (Seehausen & Alphen, 1998; Gray & McKinnon, 2007) and phenotype matching in 

threespine stickleback (Conte & Schluter, 2013). Regardless of whether the process of 

assortative mating is passive or active, if gene flow is significantly reduced then it is possible 

for the combination of divergent natural selection and reproductive isolation to result in 

genetic divergence and ultimately speciation. 

Fish found in freshwater lakes provide ideal species to study divergence related to 

foraging ecology. In general, fish in the shallow littoral habitat of lakes consume a variety of 

benthic invertebrates and exhibit deep-bodied phenotypes, associated with increased 
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maneuverability to capture cryptic prey in a structurally complex environment (Robinson et 

al., 1996; Svanbäck & Eklöv, 2003). In contrast, pelagic fish are more streamlined in body 

shape, which increases their burst swim speed to catch prey suspended in the water column 

(Schluter, 1995; Collar & Wainwright, 2009). Due to the strong functional relationships 

among morphology, swim performance, and foraging efficiency in fish (Webb, 1984; Fisher 

& Hogan, 2007; Collar & Wainwright, 2009), the development of trophic polymorphisms 

observed in many fishes are likely related to divergent natural selection on phenotype related 

to foraging tactic. Indeed, trophic polymorphisms have been linked to foraging tactic within 

populations of threespine stickleback (Schluter & McPhail, 1992; Svanbäck & Schluter, 

2012), Lake Malawi cichlids (Hulsey et al., 2013), lake whitefish (Coregonus clupeaformis; 

(Pigeon et al., 1997; Campbell & Bernatchez, 2004; Rogers & Bernatchez, 2007), and lake 

trout (Salvelinus namaycush; (Chavarie et al., 2013, 2015). 

Northern temperate lakes are of particular interest to studies of divergence and 

sympatric speciation because these lakes represent geologically “young” environments, and 

were colonized within approximately the last 12,000 years by fish that were displaced during 

the last ice age (Mandrak & Crossman, 1992; Robinson et al., 2000). The processes of 

colonization and resource competition has resulted in resource partitioning among species or, 

when heterospecific competitors are absent, specialization within species (i.e., foraging 

ecomorphs). For example, in North America, bluegill (Lepomis macrochirus) and 

pumpkinseed sunfish (L. gibbosus) co-exist in many lakes across their distribution, with 

pumpkinseed specializing on benthic invertebrates in the shallow littoral habitat and bluegill 

specializing on zooplankton in the deeper pelagic habitat (Keast, 1978; Robinson et al., 

1993). However, in lakes where only one of the two sunfish species is present, littoral and 

pelagic foraging ecomorphs may develop within a single species to occupy both resource 

niches. Indeed, foraging ecomorphs have been identified in populations of bluegill in 
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Michigan (USA) and Japan where pumpkinseed are absent (Ehlinger & Wilson, 1988; 

Ehlinger, 1990; Yonekura et al., 2002). For pumpkinseed, almost 30 lakes with foraging 

ecomorphs have been reported in the Canadian Shield (Ontario, Canada) and Adirondack 

(New York, USA) regions, consistently in the absence of bluegill (Robinson et al., 2000; 

Jastrebski & Robinson, 2004; Weese et al., 2012). 

In the current study we examine the evidence for disruptive selection, reproductive 

isolation and genetic divergence between ecomorphs in pumpkinseed. We focus on a 

pumpkinseed population in Ashby Lake (Ontario, Canada, 45º05’N, 77º21’W), a temperate 

lake located on the southern portion of the Canadian Shield. Ashby Lake covers an area of 

approximately 260 ha and consists of a shallow littoral habitat, with a variety of benthic 

invertebrates, but quickly drops off into the deeper pelagic habitat, with abundant 

zooplankton surrounding islands and rock shoals in the central part of the lake (Jastrebski & 

Robinson, 2004). Pumpkinseed colonized this lake after the glacial retreat some 9,000 to 

12,000 years ago (Mandrak & Crossman, 1992). The presence of littoral and pelagic foraging 

ecomorphs in Ashby Lake has been identified based on stomach content analysis of diet and 

morphological analysis of overall body shape (Jastrebski & Robinson, 2004), and studies of 

growth rates suggest that differences between these ecomorphs are the result of disruptive 

selection on morphology (Jastrebski, 2001). However, to our knowledge, there have been no 

tests of reproductive isolation in this, or any other, polymorphic pumpkinseed population. 

Based on these prior findings, we identified the Ashby Lake pumpkinseed as a system in 

which we could further examine the process of diversification and sympatric speciation by 

using the concept of a speciation continuum to look at (1) the phenotypic differentiation 

between foraging ecomorphs, (2) the presence of assortative mating, and (3) genetic 

differentiation. 
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Materials and methods 

Fish collection 

In 2011, adult pumpkinseed were collected from Ashby Lake in the spring (May 26 – 

June 15; n = 49) and summer (August 21 – 22; n = 37). Approximately equal numbers of fish 

from the littoral (n = 45) and pelagic habitats (n = 41) were collected either by angling with a 

piece of earthworm as bait or by dip-netting from the water column. The littoral habitat of 

Ashby Lake was identified as the shallow, relatively macrophyte dense nearshore margins of 

the lake that rapidly drops off into the deeper open water pelagic habitat of the lake 

punctuated by rock shoals that provide refuge for fish (Jastrebski, 2001; Jastrebski & 

Robinson, 2004). Immediately after collection, each fish was euthanized with clove oil and a 

picture of its left side was taken using an Olympus Stylus Tough-6000 (10 megapixel) digital 

camera. The wet mass (g) and total length (mm) of each fish was measured prior to removing 

the stomach contents and liver, which were stored at -20ºC for later analysis of diet. During 

the dissections, the sex and maturity of each individual was determined by examining the 

reproductive organs. Only reproductively mature fish were included in the analyses because 

niche shifts are known to occur between juvenile and adult life stages in pumpkinseed 

(Osenberg et al., 1988; Arendt & Wilson, 1997).  

In the spring of 2012 (June 11 – 22), nesting parental males that were actively 

guarding eggs were collected in the littoral (n=13) and pelagic (n=14) habitats. Prior to 

collection, each nest was visually monitored to confirm that the male was performing 

guarding and nest care behaviours. The male was then collected using a dip-net and 

approximately 100 eggs were sampled from the male’s nest and stored at -20ºC for stable 

isotope analysis. Eggs were collected as a proxy for female diet because it has been 

established for a nearby population of the closely related bluegill (Lepomis macrochirus) that 

the carbon and nitrogen isotopic compositions of eggs and female liver tissue are tightly 
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correlated, differing by approximately 1 ‰ at any sampling point during egg development 

(Colborne et al., 2015). Given the physiological and reproductive similarities between 

bluegill and pumpkinseed we are confident that this relationship is also true for pumpkinseed 

and, therefore, eggs were used as a proxy for maternal diet. As in 2011, the nesting males 

were euthanized immediately after collection, photographed, and the liver sampled as 

outlined above. Stomach contents were not collected in 2012 because nesting males do not 

actively forage and are therefore unlikely to have stomach contents that are representative of 

their diet (Gross & MacMillan, 1981). 

Samples of potential invertebrate prey were also collected during each of the periods 

when fish were sampled to establish resource baselines required for stable isotope inferences 

of diet. Pelagic zooplankton samples were collected from open-water areas adjacent to rock 

shoals where fish were sampled using a vertical tow net (mesh size 0.5 μm; depth of 3 – 4 m, 

repeated three times per site). Littoral benthic invertebrates were collected using D-net 

sweeps of the submerged macrophyte vegetation and the upper 1 – 2 cm of sediment. The D-

net samples were then hand sorted through a series of nested sieves to collect littoral benthic 

invertebrates that were classified to the nearest order. For isotope analysis, snails 

(Gastropoda) were manually removed from their shells because the shell material remains 

largely undigested and reflects the inorganic environment at the time of formation (Post, 

2002), but all other benthic invertebrate prey were analyzed intact. 

 

Morphological variation 

Using tpsDig software (Rohlf, 2008), 15 homologous landmarks were placed on each 

of the pumpkinseed images (n = 113; see (Jastrebski & Robinson, 2004), for landmark 

locations). These landmarks were used to calculate partial warp coefficients for each 

individual, which allow body shape to be examined independently of body size (see Zelditch 
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et al., 2004). Variation in warp coefficients was further partitioned into axes of major 

variation using a discriminant function analysis (DFA) comparing four groups based on 

collection habitat and sex: pelagic males (n = 35), pelagic females (n = 20), littoral males (n = 

32), and littoral females (n = 26). Subsequent statistical analyses focused on only those DFA 

axes that explained at least 20% of the total variation in shape. For each significant DFA axis, 

two-factor ANOVA models were used to examine variation in DFA score (dependent 

variable) between sexes and collection habitats (independent factors) and their interaction, 

with sampling period included as a random effect. Significant differences in body shape 

identified by these analyses were then visualized using thin-plate splines (Rohlf, 2009). 

 

 

 

Diet analysis 

The preserved stomach content samples of each fish were thawed to room temperature 

and sorted using a dissection microscope into one of four prey groups: zooplankton 

(copepods and cladocerans), molluscs (gastropods, bivalves), benthic prey (ephemeroptera, 

trichoptera, odonates, and amphipods), and “other” (terrestrial insects, fish eggs, plant 

material, unidentifiable contents). Prey samples from each fish were then dried at 50ºC for 24 

hours and the dry mass (mg) of each prey type was determined. The proportion of each prey 

type (dry mass of prey type/total dry mass of all stomach contents) from each fish was arcsine 

transformed to meet the assumptions of normal distribution and homogeneous variance for 

further statistical analyses (Zar, 1999; Jastrebski & Robinson, 2004). The transformed 

proportion measures were then used in a two-factor MANOVA test of the four prey groups 

(dependent variables: proportion of each prey type in diet; independent variables: collection 

habitat, sex, and their interaction). If an independent factor (habitat or sex) was found to be 
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significant in the MANOVA, separate t-tests were used for each prey group to compare that 

independent variable. Only fish with measurable stomach contents were included in the 

analyses. 

Next, stable isotope analysis was conducted in the Laboratory for Stable Isotope 

Science (LSIS) at The University of Western Ontario (London, Ontario Canada). The liver 

tissue samples of each fish and eggs (from the nests of parental males collected in Summer 

2012), were prepared for stable isotope analysis by freeze drying them at -50 ºC for 24 hours 

and manually grinding into a fine powder using a mortar and pestle. The isotope ratios of 

carbon (13C:12C) and nitrogen (15N:14N) were then determined using a Costech elemental 

analyzer coupled to a Thermo Finnigan Deltaplus XL stable isotope ratio mass-spectrometer in 

continuous flow mode. The ratio of each isotope was calculated as the difference between the 

measured sample and an international standard reference material: 

δX = (Rsample/Rstandard – 1) 

where X is the isotope being measured (either 13C or 15N), R is the ratio of 13C:12C or 15N:14N, 

and δ is a measurement of the heavy to light isotope in a sample expressed as parts per 

thousand (‰). The international standardization (Rstandard) for δ13C was Vienna Pee Dee 

Belemnite (VPDB) and for δ15N was atmospheric nitrogen (AIR). Two-point curves were 

used to calibrate δ13C and δ15N values to these international standards and internal laboratory 

standards were used to monitor precision and accuracy (see appendix for details). 

Additionally, the measured δ13C values of fish liver were mathematically corrected for the 

presence of lipids using the mass balance correction for aquatic organisms of (Kiljunen et al., 

2006): 

(1)     δ13C’ = δ13C + D × (I + 3.90 / (1 + 287 / L)) 

and 

(2)    L = 93 / 1 + (0.246 × C:N – 0.775)-1 
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where the estimated lipid content of the sample (L) is based on its measured atomic carbon to 

nitrogen ratio (C:N), which is used with the measured value (δ13C), the isotopic difference 

between pure protein and lipid (D; 7.02 ‰, (Kiljunen et al., 2006), and the constant I (0.05, 

(Kiljunen et al., 2006)) to estimate the lipid-corrected isotope value of a given sample 

(δ13C’). 

To create group estimates of the mean resource use between habitats (littoral and 

pelagic) and sexes in each sampling period we used SIAR (Stable Isotope Analysis in R) two-

member mixing models to estimate the contribution of littoral prey and pelagic prey to 

pumpkinseed diet (Parnell et al., 2010). The SIAR mixing model incorporates both δ13C and 

δ15N values of each fish collected and the variability both between and within the prey 

resources of each habitat (Parnell et al., 2010). The ‘source’ variables of the model were 

based on the mean (± 1 SD) isotopic composition of snails (littoral habitat) and zooplankton 

(pelagic habitat). Snails are frequently used as the source value for all littoral invertebrates in 

these models because snails have similar isotopic compositions to other benthic invertebrates 

and due to their long-lived nature represent average littoral diet over a period more similar to 

the fish being sampled than other benthic invertebrates (Post, 2002; Correa et al., 2012). 

Indeed, comparisons of the isotopic compositions of benthic prey types we collected 

supported the use of snails as representative of the littoral ‘source’ values (see appendix for 

details). Due to the potential for temporal variability in isotopic compositions over our 

sampling periods, separate mixing models were used for each of the collection periods with 

unique ‘source’ values (see appendix for prey isotopic composition details). Mean trophic 

enrichment factors (TEFs) for δ13C (+0.47 ± 1.23 ‰; (Vander Zanden & Rasmussen, 2001)) 

and δ15N (+5.00 ± 1.50 ‰; (Caut et al., 2009; Locke et al., 2014)) were estimated based on 

other studies of temperate freshwater fishes because species-specific TEFs for pumpkinseed 

are unavailable.  
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To obtain individual estimates of diet the SIARsolo command for SIAR (see above) 

was used with the same model components, i.e. sources and TEFs, to generate a % Littoral 

diet estimate for each pumpkinseed sampled. These % Littoral proportion estimates for each 

individual were and used in a two-factor ANOVA (dependent variable: % Littoral; 

independent factors: collection habitat and sex, plus their interaction; random effect: 

sampling period) to compare this isotopic compositions of individuals across sampling sites 

and between the sexes. 

 

Morphology, diet, and condition 

The relationship between morphology and diet was first tested using a linear model 

that included the % Littoral estimates for each individual (dependent variable), total body 

length and DFA 1 scores of shape (independent factors), and sampling period (random 

effect). Next, we constructed an ecomorph “score” that combined the morphological (DFA 1) 

and diet (% Littoral) data using principal component analysis (PCA). Given that % Littoral 

estimates ranged from low values for pelagic consumers to high values for littoral consumers, 

whereas DFA 1 scores ranged from high values for pelagic body shape to low values for 

littoral body shape (see results below), the DFA 1 scores for each fish were multiplied by –1 

to facilitate interpretation of the axis loadings before use in the PCA. The first principal 

component (PCA 1) subsequently had positive loadings on both variables such that higher 

PCA 1 scores, i.e. higher ecomorph scores, were associated with a more littoral shape and 

diet as compared to lower scores, which were associated with a pelagic shape and diet. 

Fulton’s condition factor was calculated for each fish using the wet mass (g) and total 

body length (mm) (K = mass/length3 × 105). The condition factor provides an estimate of 

overall energetic state for each fish (e.g. Neff & Cargnelli, 2004; Magee et al., 2006). 

Condition factor values (dependent variable) were then compared using ANCOVA models 
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that included sex (independent factor) and ecomorph score (covariate) and sampling period 

(random effect). Separate models were run for fish collected from the littoral and pelagic 

habitats. However, condition factor did not differ between males and females collected in 

either habitat (both P ≥ 0.11) and therefore sex was removed from the analysis. Subsequently, 

ecomorph score and Fulton’s condition factor (K) were correlated using separate Pearson’s 

correlation coefficients for littoral and pelagic-caught fish. 

 

Assortative mating and genetic differentiation 

To test for assortative mating, the ecomorph scores for the parental males collected in 

Spring 2012 were used in a Pearson’s correlation with the % Littoral estimates based on eggs 

collected from the male’s nest (a proxy for female diet). A positive correlation would indicate 

assortative mating within the littoral and pelagic foraging ecomorphs. Next, to test for genetic 

differentiation, DNA from each of the 113 adult fish in this study was extracted using a 

proteinase K digestion (Neff et al., 2000). Each individual was then genotyped at nine 

previously described microsatellite loci ((Colbourne et al., 1996): LMA 29, LMA 87; 

(DeWoody et al., 1998): RB7, RB20; (Neff et al., 1999): LMA 116, LMA 122, LMA 124; 

(Schable et al., 2002): LMAR 10, LMAR 14). The microsatellite products were visualized 

using a CEQ 8000 (Beckman Coulter) and manually scored in relation to a known size 

standard. Micro-checker was used to determine if microsatellite allele frequencies deviated 

significantly from the expectations of Hardy-Weinberg equilibrium (Van Oosterhout et al., 

2004). Only LMAR14 deviated significantly from Hardy-Weinberg equilibrium, showing a 

homozygote excess consistent with the presence of a null allele. Consequently, this locus was 

included only in the genetic analyses that accommodate null alleles (Structure, Fst), but 

excluded from analyses that may be biased by null alleles (individual genetic distances). 
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The microsatellite dataset was first used to test for the presence of discrete genetic 

groups in Ashby Lake using the Bayesian clustering method implemented by the program 

Structure v2.3.3 (Pritchard et al., 2000). Specifically, the presence of two genetic clusters was 

tested using a model with admixture and correlated allele frequencies. To ensure the results 

converged on a single solution, the model was run using 20 replicate simulations of 100,000 

burn-in steps followed by 200,000 resampling steps. The results were then aggregated using 

Structure harvester and Clumpp (Jakobsson & Rosenberg, 2007; Earl & vonHoldt, 2011). 

Next, the global Fst (Weir & Cockerham, 1996) was calculated using the null allele 

correction implemented in FreeNA (Chapuis & Estoup, 2007) to examine genetic 

differentiation between fish collected from littoral and pelagic habitats. These comparisons 

were run both for all fish, and for just the subset of nesting males that were collected in 2012. 

For each test, significance was assessed by resampling over loci to generate 95% confidence 

intervals from 1000 bootstrap replicates. 

Finally, a relationship between the pairwise genetic distance estimates between 

individuals and the difference in ecomorph score between those individuals was examined. 

Again, these comparisons were made both for all fish, and for just the nesting males that were 

collected in 2012. Genalex 6.4.1 was used to calculate the matrix of genetic distances 

between individuals, and to compare the genetic distance matrix to the ecomorph distance 

matrix using a Mantel test with 999 permutations to assess significance (Peakall & Smouse, 

2006). 

Results 

Morphological variation between habitats 

Body shape differed significantly among the pumpkinseed groups (pelagic males, 

pelagic females, littoral males, littoral females; DFA: Wilks’ λ = 0.17, P < 0.001; Fig. 1), 

with DFA 1 and DFA 2 accounting for 54% and 34%, respectively, of total variation in 
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shape. Further examination of the DFA 1 and DFA 2 scores indicated males had higher 

values than females on both axes (DFA 1: ANOVA, F1, 41.4 = 22.11, P < 0.001; DFA 2: F1, 

48.05 = 48.05, P < 0.001). The DFA values also differed between collection habitats with 

pelagic caught fish having higher DFA 1 scores than littoral fish (ANOVA, F1, 108.7 = 108.19, 

P < 0.001), but littoral fish having higher DFA 2 values than pelagic fish (ANOVA, F1, 107.1 = 

25.98, P < 0.001). There were no interaction effects between sex and collection habitat for 

either DFA axis (DFA 1: ANOVA, F1, 105.8 = 3.07, P = 0.08; DFA 2: F1, 108.1 = 0.0001, P = 

0.99; Fig. 1).  Visualization of DFA 1 using thin-plate splines showed that lower values (i.e. 

littoral females) were associated with decreased body depth in the mid-body and posterior 

region, whereas higher DFA 2 values (i.e. littoral males) were associated with a larger head 

region, reduced tail depth, and a more horizontal pectoral fin orientation (Fig. 1). 

 

Diet analysis 

Of the fish collected for stomach content analysis, 74% (64 of 86 fish) had 

measureable contents. Comparisons across prey types indicated that overall there were 

significant differences in the stomach contents of pumpkinseed based on both the collection 

habitat and between the sexes (MANOVA; Wilks’ λ = 0.58, df = 12, 151.1, P = 0.001). 

Comparisons of the independent variables indicated that stomach contents of the prey groups 

differed between collection habitats (F3, 58 = 0.40, P < 0.001; Table 1), but there were non-

significant differences between the sexes (F3, 58 = 0.13, P = 0.07) and no interaction between 

habitat and sex (F3, 58 = 0.05, P = 0.40). Further comparisons of prey types between collection 

habitats indicated that pelagic caught fish consumed more zooplankton and fewer benthic 

invertebrates than those caught in the littoral habitat (Table 1).  
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Isotopic compositions (δ13C and δ15N) of pelagic- and littoral-caught pumpkinseed 

varied among the sampling periods and collection habitats (Appendix Fig. A.1). SIAR mixing 

model estimates of diet indicated that across all individuals from a given collection habitat 

the littoral-caught fish consumed 68 - 71% littoral resources as compared to 30 – 55% littoral 

resources in the diets of pelagic-caught fish (Table 2, Fig. 2). Analysis of variance models 

based on SIARsolo individual estimates of % Littoral contribution to dies indicate that in 

addition to differences between collection habitat ( ANOVA: F1, 100.4 = 16.45, P < 0.001), 

there was a greater contribution of littoral resources to males (54% littoral) as compared to 

females (46%) across sampling habitats (ANOVA: F1, 98.59 = 5.34, P = 0.02). There was no 

interaction effect between sex and collection habitat (ANOVA: F1, 101.1 = 2.53, P = 0.11). 

Isotopic compositions of each fish are presented in Appendix Tables A.2 and A.3. 

 

Morphology, diet, and condition 

Analysis of covariance found that the % Littoral diet estimates were not related to 

body length of individual pumpkinseed (F1, 101.4 = 1.38, P = 0.24). However, the % Littoral 

contribution to diet was related to body shape such that lower DFA 1 scores (i.e. increased 

body depth in the anterior region) were associated with a higher contribution of littoral 

resources to diet (F1, 101.2 = 9.25, P = 0.003). The PCA analysis combining morphology scores 

(DFA 1; see above) and % Littoral estimates of diet indicated that 61% of the total variation 

was explained by PCA 1, consequently only these values were used as an overall ecomorph 

score for each individual. Comparing the ecomorph scores and condition factor of 

pumpkinseed indicated that there was a significant correlation between these variables in 

pelagic-caught fish (Pearson’s r = -0.34, n = 54, P = 0.01), with more pelagic ecomorph 

scores being associated with higher condition, although no relationship between these 

variables was observed in littoral-caught fish (Pearson’s r = 0.01, n = 52, P = 0.92; Fig. 3). 
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Assortative mating and genetic differentiation 

There was a significant relationship between a nesting male’s ecomorph score and the 

% Littoral estimates of eggs from his nest: nesting males with a more littoral ecomorph score 

had eggs with higher % Littoral values (Pearson’s r = 0.42, n = 27, P = 0.03; Fig. 4). The 

microsatellite data, however, did not indicate evidence of neutral genetic differentiation 

between the ecomorphs. First, the Structure analysis did not identify discrete genetic clusters. 

When the data were fit to a model of two genetic clusters based on collection habitat, all 

individuals had intermediate membership in each cluster and the membership coefficients 

were not related to ecomorph scores (Fig. 5). The Fst values also did not indicate significant 

divergence between littoral and pelagic caught fish when comparing across fish from all 

sampling periods (Fst = 0.0004, n = 113, 95% CI: -0.0029 – 0.0038) or only the nesting males 

from Spring 2012 (Fst = 0.0002, n = 27, 95% CI: -0.0095 – 0.0131). Finally, there was no 

relationship between genetic distance and the ecomorph score (all fish: Pearson’s r = -0.01, n 

= 113, P = 0.40; nesting males only: Pearson’s r = 0.03, n = 27, P = 0.33). 

 

Discussion 

In freshwater fish, divergent selection in littoral versus pelagic habitats can result in 

foraging ecomorphs that have predictable differences in morphology and diet (Skulason & 

Smith, 1995; Robinson et al., 2000). Here, we found that littoral-caught pumpkinseed had a 

deeper head region and were less streamlined overall than pelagic fish, consistent with 

morphological analyses of pumpkinseed foraging ecomorphs across multiple populations 

(Jastrebski & Robinson, 2004; Weese et al., 2012). Additionally, our stable isotope-based 

diet analyses indicated that littoral-caught pumpkinseed consumed more benthic 

invertebrates, such as snails, and fewer zooplankton as compared to pelagic-caught 

individuals, supporting a previous short-term analysis of diet in Ashby Lake using stomach 
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contents alone (Jastrebski & Robinson, 2004). There was also a link between body shape and 

diet independent of habitat associations, indicating that pumpkinseed with deeper bodies 

consumed more littoral benthic invertebrates than pumpkinseed with shallower body shapes. 

These data thus support the presence of morphological variation related to foraging tactic, i.e. 

foraging ecomorphs, in the Ashby Lake pumpkinseed population. 

Foraging ecomorphs resulting from disruptive natural selection do not necessarily 

exist as discrete phenotypes, but may instead represent a phenotypic gradient along which 

individuals display varying degrees of specialization towards available resource types (Moles 

et al., 2010; Ellerby & Gerry, 2011). Indeed, morphological variation within polymorphic 

pumpkinseed populations has been found to range from continuous variation in fish from the 

littoral and pelagic habitats to nearly bimodal distributions with discrete habitat-related 

phenotypes (e.g. Robinson et al., 1996). Based on our data, littoral- and pelagic-caught 

pumpkinseed in Ashby Lake differed significantly in diet and body shape, but there was 

considerable overlap between the ecomorphs, indicating a gradient of foraging phenotypes 

within this population. The high frequency of “intermediate” phenotypes in this population 

may be related to the strength of disruptive selection based on resource use in the different 

habitats. For example, using Fulton’s condition factor, a correlate of energetic condition and 

fitness in sunfish (e.g. (Neff & Cargnelli, 2004; Magee et al., 2006), we found a relationship 

between condition and ecomorph score in pelagic-caught pumpkinseed, but not littoral-

caught fish. Similar relationships between condition and morphology within the littoral and 

pelagic habitats were reported for the pumpkinseed of Paradox Lake (New York, USA), 

another population characterized by foraging ecomorphs with phenotypic overlap the 

collection habitats (Robinson et al., 1996). Taken together, these data suggest that selection 

for resource specialization is similar across at least some pumpkinseed populations and that 

disruptive selection pressure on foraging ecomorphs is likely strongest in the pelagic habitat. 
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Regardless of the strength of disruptive natural selection, in order for foraging 

ecomorphs to drive sympatric speciation there must also be a mechanism of reproductive 

isolation. We predicted that assortative mating could restrict gene flow between foraging 

ecomorphs and lead to reproductive isolation in our study population. We found across all the 

nests sampled, regardless of habitat, that there was positive relationship between the 

ecomorph scores of nesting male pumpkinseed and the diet, and presumably ecomorph, of the 

females with whom he mated (inferred from the isotopic composition of the eggs in the 

nests). Assortative mating may occur passively when ecomorphs forage and breed in different 

habitats (Feder et al., 1994; Snowberg & Bolnick, 2008, 2012), as is likely in our study 

population – nesting males were generally separated into the littoral and pelagic habitats 

during the breeding season. Indeed, a recent review of speciation reported that divergent mate 

choice was related to habitat use in 54% of the fish studied (Scordato et al., 2014).  

Assortative mating may also occur through active mate choice, as has been demonstrated in 

other sympatric populations of fish (e.g. Seehausen & Alphen, 1998; Gray & McKinnon, 

2007).  Regardless of whether the process of assortative mating between littoral and pelagic 

pumpkinseed is primarily passive or active, our data provide the first evidence of potential 

reproductive isolation between pumpkinseed foraging ecomorphs, which could limit gene 

flow and facilitate increased divergence towards sympatric speciation. 

Despite evidence of disruptive natural selection and reproductive isolation, the 

primary components of the typical sympatric speciation model, multiple analyses of our 

microsatellite loci provided no evidence of neutral genetic differentiation between littoral and 

pelagic ecomorphs. This lack of neutral genetic differentiation between ecomorphs could, at 

least in part, be a reflection of the relatively short amount of time that has passed since the 

lakes were re-colonized after the last ice age (Weese et al., 2012). Ashby Lake has been 

populated by pumpkinseed for at most 12,000 years (Mandrak & Crossman, 1992). In 
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comparison, African rift lake cichlid species flocks have been diverging for between 2.5 to 

4.5 million years in Lake Malawi and between 190,000 and 270,000 years in Lake Victoria 

(Genner et al., 2007). It is possible that genetic divergence between pumpkinseed ecomorphs 

is present at functional loci, such as those related to body shape, as there is a heritable 

component to an individual’s ecomorph (Parsons & Robinson, 2006). Indeed, littoral-pelagic 

ecomorphs in a population of Midas cichlids (Amphilophus spp.) have been shown to differ at 

functional loci related to shape and fin placement but not at neutral loci after 22,000 years of 

divergence (Franchini et al., 2014). Overall, the absence of neutral genetic differentiation in 

the pumpkinseed ecomorphs examined here does not rule out differentiation at functional loci 

and the possibility of eventual sympatric speciation. Instead, the absence highlights that this 

population falls somewhere along the speciation continuum between a homogenous 

population and separate species (Hendry et al., 2009).  

The strength and temporal stability of selection and assortative mating are important 

factors determining the diversification process and ultimately the likelihood of sympatric 

speciation (e.g. Bolnick, 2011). For example, northern temperate fishes have been shown to 

have considerable phenotypic plasticity associated with foraging phenotypes, possibly related 

to the relative high levels of temporal environmental variability in temperate lakes (e.g. 

Svanbäck et al., 2009; Bolnick, 2011). Foraging ecomorphs of both pumpkinseed and arctic 

charr (Salvelinus alpinus), have been experimentally shown to arise largely because of 

phenotypic plasticity during development with a smaller heritable component (Robinson & 

Wilson, 1996; Adams & Huntingford, 2004; Parsons & Robinson, 2006). Consequently, 

disruptive selection on “hybrids” (offspring of parents that differed in their ecomorphology) 

may be weakened if offspring can develop into either ecomorph based on environmental cues 

during development. Furthermore, reproductive isolation in sunfish may be weakened by the 

presence of cuckolder male reproductive tactics, e.g. sneaker males, that may be relatively 
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indiscriminate in their mating preferences (Gross, 1982). Indeed, recent evidence indicates 

that cuckolders in the littoral habitat do not consistently discriminate among sunfish species 

(Garner & Neff, 2013), let alone foraging ecomorphs within their own species. Therefore, it 

is possible that both conditions that favor phenotypic plasticity and high rates of cuckoldry 

reduce the likelihood of speciation in this system. 

In conclusion, we focused on what are likely to be the early stages of divergence by 

examining phenotypic divergence and assortative mating within a population of pumpkinseed 

that does not have geographic barriers to gene flow. We found evidence of assortative mating 

between littoral and pelagic foraging ecomorphs, but no evidence of genetic differentiation. 

Overall, our data indicate that the Ashby Lake pumpkinseed have not become separate 

species, but rather represent a population in the early stages of phenotypic divergence along 

the speciation continuum. 
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Table 1. Summary of the stomach contents of pumpkinseed (Lepomis gibbosus) collected 

from the littoral and pelagic habitats. The mass and proportion of total stomach mass 

estimates for each other the four prey groups are presented as the mean ± 1 standard error. 

Test statistics (t-stat, df, and p-value) comparing the proportion of stomach content mass 

between collection habitats are also shown. 

 

 Mean mass (mg) Mean proportion 
of diet 

Habitat 
comparison 

 
Littoral n Pelagic n Littoral Pelagic 

t-
stat df 

P-
value 

Zooplankton 
0.65 ± 
0.31 

32 
14.04 ± 

5.91 
32 

0.09 ± 
0.04 

0.50 ± 
0.08 

4.44 62 
< 

0.001 

Molluscs 
3.23 ± 
1.04 

32 
5.31 ± 
4.54 

32 
0.20 ± 
0.06 

0.10 ± 
0.30 

-1.01 62 0.31 

Benthic prey 
21.08 ± 

4.24 
32 

29.98 ± 
25.70 

32 
0.39 ± 
0.07 

0.13 ± 
0.06 

-2.52 62 0.01 

Other 
7.24 ± 
2.46 

32 
21.36 ± 
13.15 

32 
0.32 ± 
0.07 

0.27 ± 
0.06 

-0.70 62 0.49 

 

Table 2. Summary of the isotopic compositions and mixing model diet estimates of 

pumpkinseed (Lepomis gibbosus) collected from the littoral and pelagic habitats over three 

sampling periods. Isotopic compositions of liver tissue are presented as the mean (± 1 SD). 

SIAR mixing model estimates of the proportion of diet from littoral resources are presented 

for each sex (and combined) for each sampling period; estimates are presented as the mean 

and 95% Bayesian credibility interval values. 

     SIAR – Proportion Littoral Estimates 
Sampling 

Period 
Collection 

Habitat δ13C δ15N  Males Females Sexes Combined 
Spring 2011 Littoral –25.5 ± 2.0 +6.4 ± 1.1 0.82 (0.67 – 0.98) 0.61 (0.46 – 0.76) 0.71 (0.59 – 0.82)
 Pelagic –26.6 ± 1.5 +7.5 ± 0.7 0.55 (0.42 – 0.67) 0.51 (0.32 – 0.65) 0.53 (0.44 – 0.63)
      
Summer 2011 Littoral –23.1 ± 1.9  +6.1 ± 0.7 0.75 (0.49 – 1.00) 0.59 (0.22 – 0.96) 0.68 (0.54 – 0.82)
 Pelagic –24.0± 1.7 +6.8 ± 0.5  0.55 (0.21 – 0.87) 0.48 (0.20 – 0.75) 0.54 (0.34 – 0.73) 
        
Spring 2012* Littoral –23.0 ± 1.3  +6.7 ± 0.5  0.68 (0.52 – 0.84) -- -- 
 Pelagic –25.7 ± 0.7 +7.5 ± 0.3 0.30 (0.19 – 0.42) -- -- 

*Only nesting parental males were collected in Spring 2012 (see methods for details) 
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Figure Legends  
 
Figure 1. Discriminant function analysis (DFA) of body shape variation among four groups 

of pumpkinseed (Lepomis gibbosus): littoral males, littoral females, pelagic males, pelagic 

females.  The plot depicts the mean (± 1 SD) values of each pumpkinseed group for the first 

two discriminant function axes (DFA 1 and DFA 2). Thin-plate splines below the scatterplot 

depict the maximum and minimum observed values for each DFA axis at 3× magnification. 

 

Figure 2. Boxplots of SIAR isotope-mixing model estimates of the littoral prey resource 

contribution to the diets of male and female pumpkinseed (Lepomis gibbosus) collected from 

the littoral and pelagic habitats. Stable isotopic compositions of liver tissues were used in 

independent mixing models for each sex and sampling period. The boxplots represent the 

inner 50% of observations, with the mean value indicated by the line within each box. The 

whiskers represent the 90th and 10th percentiles and dots are the 95th and 5th percentiles. 

 

Figure 3. Relationship between body condition and ecomorph scores of male and female 

pumpkinseed (Lepomis gibbosus) collected from the (a) littoral and (b) pelagic habitats. 

Condition was estimated using Fulton’s condition factor. Ecomorph scores were generated 

for each individual based on DFA 1 scores and % Littoral diet values (see methods for 

details). 

 

Figure 4. Relationship between nesting male ecomorph scores and egg isotopic composition 

of pumpkinseed (Lepomis gibbosus) collected from nests in the pelagic (○) and littoral (●) 

habitats. Ecomorph scores for each nesting male were generated based on DFA 1 morphology 

scores and % Littoral resource use estimates (see methods for details). The % Littoral 
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estimates of eggs for each nest (SIARsolo mixing models; see methods) were used as a proxy 

for maternal diet and ecomorph. 

 

Figure 5. Genetic clustering of individual pumpkinseed (Lepomis gibbosus) collected from 

the littoral and pelagic habitats. Each vertical bar represents one individual, presented in rank 

order based on ecomorph scores, and indicating proportional membership coefficients in the 

two genetic clusters modelled by Structure. 
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