108 research outputs found

    Improving Multiple Surface Range Estimation of a 3-Dimensional FLASH LADAR in the Presence of Atmospheric Turbulence

    Get PDF
    Laser Radar sensors can be designed to provide two-dimensional and three-dimensional (3-D) images of a scene from a single laser pulse. Currently, there are various data recording and presentation techniques being developed for 3-D sensors. While the technology is still being proven, many applications are being explored and suggested. As technological advancements are coupled with enhanced signal processing algorithms, it is possible that this technology will present exciting new military capabilities for sensor users. The goal of this work is to develop an algorithm to enhance the utility of 3-D Laser Radar sensors through accurate ranging to multiple surfaces per image pixel while minimizing the effects of diffraction. Via a new 3-D blind deconvolution algorithm, it will be possible to realize numerous enhancements over both traditional Gaussian mixture modeling and single surface range estimation. While traditional Gaussian mixture modeling can effectively model the received pulse, we know that its shape is likely altered due to optical aberrations from the imaging system and the medium through which it is imaging. Simulation examples show that the multi-surface ranging algorithm derived in this work improves range estimation over standard Gaussian mixture modeling and frame-by-frame deconvolution by up to 89% and 85% respectively

    Wnt signaling in granulosa cell tumors of the ovary

    Get PDF
    Granulosa cell tumors (GCT), a malignant type of sex-cord stromal tumor, account for approximately 2-5% of all ovarian malignancies. They are often identified before they have spread beyond the ovary, but advanced disease can be quite challenging to treat. Wnt signaling has been suggested to contribute to the formation of GCT. We hypothesized Wnt signaling was involved in human GCT

    Image Deblurring and Near-real-time Atmospheric Seeing Estimation through the Employment of Convergence of Variance

    Get PDF
    A new image reconstruction algorithm is presented that will remove the effect of atmospheric turbulence on motion compensated frame average images. The primary focus of this research was to develop a blind deconvolution technique that could be employed in a tactical military environment where both time and computational power are limited. Additionally, this technique can be employed to measure atmospheric seeing conditions. In a blind deconvolution fashion, the algorithm simultaneously computes a high resolution image and an average model for the atmospheric blur parameterized by Fried’s seeing parameter. The difference in this approach is that it does not assume a prior distribution for the seeing parameter, rather it assesses the convergence of the image’s variance as the stopping criteria and identification of the proper seeing parameter from a range of candidate values. Experimental results show that the convergence of variance technique allows for estimation of the seeing parameter accurate to within 0.5 cm and often even better depending on the signal to noise ratio

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Core handling and processing for the WAIS Divide ice-core project

    Get PDF
    On 1 December 2011 the West Antarctic Ice Sheet (WAIS) Divide ice-core project reached its final depth of 3405 m. The WAIS Divide ice core is not only the longest US ice core to date, but is also the highest-quality deep ice core, including ice from the brittle ice zone, that the US has ever recovered. The methods used at WAIS Divide to handle and log the drilled ice, the procedures used to safely retrograde the ice back to the US National Ice Core Laboratory (NICL) and the methods used to process and sample the ice at the NICL are described and discussed

    Emergent Trophic Interactions Following the Chinook Salmon Invasion of Patagonia

    Get PDF
    In their native range, Pacific salmon (Oncorhynchus spp.) have strong interactions with a multitude of species due to the annual pulse of marine-derived nutrients that they deliver to streams and forests when they spawn and die. Over the past few decades, Chinook salmon (Oncorhynchus tshawytscha) has established non-native populations throughout the Patagonia region of southern South America. Here, we provide the first assessment of the pathways through which salmon-derived nutrients enter stream and forest food webs in Patagonia by surveying multiple streams in southern Chile to identify invertebrate and vertebrate consumers of salmon carcasses and summarizing all documented trophic interactions of Chinook salmon in Patagonia. Blowflies (Calliphoridae) were the dominant colonizer of carcasses in the riparian zone, and midge flies (Chironomidae) were the most common invertebrate on submerged carcasses. Camera trap monitoring in the riparian zone revealed consumption of carcasses or carcass-associated invertebrates by the insectivorous passerine bird “chucao” (Scelorchilis rubecula), small rodents (black rat Rattus rattus, house mouse Mus musculus, and/or colilargo Oligoryzomys longicaudatus), the South American fox “culpeo” (Lycalopex culpaeus), and the invasive American mink (Neovison vison). A mink was filmed transferring a carcass from stream to streambank, indicating that vertebrate scavenging likely increases the degree to which marine-derived nutrients enter terrestrial food webs. The native taxa that consume salmon are closely related to species that benefit from salmon consumption in North America, suggesting that the pathways of salmon nutrient incorporation in North American food webs have functionally re-emerged in South America. Similarly, non-native trout (Oncorhynchus mykiss and Salmo trutta) and mink consume salmon in Patagonia, and their eco-evolutionary history of coexistence with salmon could mean that they are preadapted for salmon consumption and could thus be key beneficiaries of this invasion. Expanded monitoring of the abundance and impacts of salmon will be vital for understanding how these novel inputs of marine-derived nutrients alter Patagonian food webs

    Spreadsheets for Analyzing and Optimizing Space Missions

    Get PDF
    XCALIBR (XML Capability Analysis LIBRary) is a set of Extensible Markup Language (XML) database and spreadsheet- based analysis software tools designed to assist in technology-return-on-investment analysis and optimization of technology portfolios pertaining to outer-space missions. XCALIBR is also being examined for use in planning, tracking, and documentation of projects. An XCALIBR database contains information on mission requirements and technological capabilities, which are related by use of an XML taxonomy. XCALIBR incorporates a standardized interface for exporting data and analysis templates to an Excel spreadsheet. Unique features of XCALIBR include the following: It is inherently hierarchical by virtue of its XML basis. The XML taxonomy codifies a comprehensive data structure and data dictionary that includes performance metrics for spacecraft, sensors, and spacecraft systems other than sensors. The taxonomy contains >700 nodes representing all levels, from system through subsystem to individual parts. All entries are searchable and machine readable. There is an intuitive Web-based user interface. The software automatically matches technologies to mission requirements. The software automatically generates, and makes the required entries in, an Excel return-on-investment analysis software tool. The results of an analysis are presented in both tabular and graphical displays

    Multi-Frequency Electrocochleography and Electrode Scan to Identify Electrode Insertion Trauma during Cochlear Implantation

    Get PDF
    Intraoperative electrocochleography (ECOG) is performed using a single low-frequency acoustic stimulus (e.g., 500 Hz) to monitor cochlear microphonics (CM) during cochlear implant (CI) electrode insertion. A decrease in CM amplitude is commonly associated with cochlear trauma and is used to guide electrode placement. However, advancement of the recording electrode beyond the sites of CM generation can also lead to a decrease in CM amplitude and is sometimes interpreted as cochlear trauma, resulting in unnecessary electrode manipulation and increased risk of cochlear trauma during CI electrode placement. In the present study, multi-frequency ECOG was used to monitor CM during CI electrode placement. The intraoperative CM tracings were compared with electrode scan measurements, where CM was measured for each of the intracochlear electrodes. Comparison between the peak CM amplitude measured during electrode placement and electrode scan measurements was used to differentiate between different mechanisms for decrease in CM amplitude during CI electrode insertion. Analysis of the data shows that both multi-frequency electrocochleography and electrode scan could potentially be used to differentiate between different mechanisms for decreasing CM amplitude and providing appropriate feedback to the surgeon during CI electrode placement

    Open‐label, clinical trial extension:Two‐year safety and efficacy results of seladelpar in patients with primary biliary cholangitis

    Get PDF
    SummaryBackgroundSeladelpar is a potent and selective peroxisome proliferator‐activated receptor‐ή agonist that targets multiple cell types involved in primary biliary cholangitis (PBC), leading to anti‐cholestatic, anti‐inflammatory and anti‐pruritic effects.AimsTo evaluate the long‐term safety and efficacy of seladelpar in patients with PBC.MethodsIn an open‐label, international, long‐term extension study, patients with PBC completing seladelpar lead‐in studies continued treatment. Seladelpar was taken orally once daily at doses of 5 or 10 mg with dose adjustment permitted for safety or tolerability. The primary analysis was for safety and the secondary efficacy analysis examined biochemical markers of cholestasis and liver injury. The study was terminated early due to the unexpected histological findings in a concurrent study for non‐alcoholic steatohepatitis, which were subsequently found to predate treatment. Safety and efficacy data were analysed through 2 years.ResultsThere were no serious treatment‐related adverse events observed among 106 patients treated with seladelpar for up to 2 years. There were four discontinuations for safety, one possibly related to seladelpar. Among 53 patients who completed 2 years of seladelpar, response rates increased from years 1 to 2 for the composite endpoint (alkaline phosphatase [ALP] &lt;1.67 × ULN, ≄15% decrease in ALP, and total bilirubin ≀ULN) and ALP normalisation from 66% to 79% and from 26% to 42%, respectively. In those with elevated bilirubin at baseline, 43% achieved normalisation at year 2.ConclusionsSeladelpar was safe, and markedly improved biochemical markers of cholestasis and liver injury in patients with PBC. These effects were maintained or improved throughout the second year. Clinicaltrials.gov: NCT03301506; Clinicaltrialsregister.eu: 2017‐003910‐16.</jats:sec

    Open-label, clinical trial extension: Two-year safety and efficacy results of seladelpar in patients with primary biliary cholangitis

    Get PDF
    BACKGROUND: Seladelpar is a potent and selective peroxisome proliferator-activated receptor-ÎŽ agonist that targets multiple cell types involved in primary biliary cholangitis (PBC), leading to anti-cholestatic, anti-inflammatory and anti-pruritic effects. AIMS: To evaluate the long-term safety and efficacy of seladelpar in patients with PBC. METHODS: In an open-label, international, long-term extension study, patients with PBC completing seladelpar lead-in studies continued treatment. Seladelpar was taken orally once daily at doses of 5 or 10 mg with dose adjustment permitted for safety or tolerability. The primary analysis was for safety and the secondary efficacy analysis examined biochemical markers of cholestasis and liver injury. The study was terminated early due to the unexpected histological findings in a concurrent study for non-alcoholic steatohepatitis, which were subsequently found to predate treatment. Safety and efficacy data were analysed through 2 years. RESULTS: There were no serious treatment-related adverse events observed among 106 patients treated with seladelpar for up to 2 years. There were four discontinuations for safety, one possibly related to seladelpar. Among 53 patients who completed 2 years of seladelpar, response rates increased from years 1 to 2 for the composite endpoint (alkaline phosphatase [ALP] <1.67 × ULN, ≄15% decrease in ALP, and total bilirubin ≀ULN) and ALP normalisation from 66% to 79% and from 26% to 42%, respectively. In those with elevated bilirubin at baseline, 43% achieved normalisation at year 2. CONCLUSIONS: Seladelpar was safe, and markedly improved biochemical markers of cholestasis and liver injury in patients with PBC. These effects were maintained or improved throughout the second year
    • 

    corecore