162 research outputs found
Dissecting Motor Neuron Disease With Drosophila melanogaster
Motor Neuron Disease (MND) typically affects patients during the later stages of life, and thus, MND is having an increasingly devastating impact on diagnosed individuals, their families and society. The umbrella term MND refers to diseases which cause the progressive loss of upper and/or lower motor neurons and a subsequent decrease in motor ability such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). The study of these diseases is complex and has recently involved the use of genome-wide association studies (GWAS). However, in the case of MND, it has been difficult to identify the complex genetics involved in subtypes, and functional investigation of new candidate disease genes is warranted. Drosophila is a powerful model for addressing these complex diseases. The UAS/Gal4/Gal80 system allows for the upregulation of Drosophila genes, the âknockdownâ of genes and the ectopic expression of human genes or mutations in a tissue-specific manner; often resulting in Drosophila models which exhibit typical MND disease pathologies. These can then be further interrogated to identify disease-modifying genes or mutations and disease pathways. This review will discuss two common MNDs and the current Drosophila models which are being used to research their genetic basis and the different pathologies of MND
Persistent Nociceptor Hyperactivity as a Painful Evolutionary Adaptation
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms
A fruit fly model for studying paclitaxel-induced peripheral neuropathy and hyperalgesia [version 2; referees: 2 approved, 1 approved with reservations]
Background: Paclitaxel-induced peripheral neuropathy is a common and limiting side effect of an approved and effective chemotherapeutic agent. The cause of this nociception is still unknown. Methods: To uncover the mechanism involved in paclitaxel-induced pain, we developed a Drosophila thermal nociceptive model to show the effects of paclitaxel exposure on third instar larvae. Results: We found that paclitaxel increases heat nociception in a dose-dependent manner, and at the highest doses also obstructs dendritic repulsion cues. Conclusions: Our simple system can be applied to identify regulators of chemotherapy-induced pain and may help to eliminate pain-related side-effects of chemotherapy
Molecular dissection of box jellyfish venom cytotoxicity highlights an effective venom antidote
The box jellyfish Chironex fleckeri is extremely venomous, and envenoming causes tissue
necrosis, extreme pain and death within minutes after severe exposure. Despite rapid and
potent venom action, basic mechanistic insight is lacking. Here we perform molecular dissection
of a jellyfish venom-induced cell death pathway by screening for host components
required for venom exposure-induced cell death using genome-scale lenti-CRISPR mutagenesis.
We identify the peripheral membrane protein ATP2B1, a calcium transporting
ATPase, as one host factor required for venom cytotoxicity. Targeting ATP2B1 prevents
venom action and confers long lasting protection. Informatics analysis of host genes required
for venom cytotoxicity reveal pathways not previously implicated in cell death. We also
discover a venom antidote that functions up to 15 minutes after exposure and suppresses
tissue necrosis and pain in mice. These results highlight the power of whole genome CRISPR
screening to investigate venom mechanisms of action and to rapidly identify new medicines
Tubulin Polymerization Promoting Protein, Ringmaker, and MAP1B Homolog Futsch Coordinate Microtubule Organization and Synaptic Growth
Drosophila Ringmaker (Ringer) is homologous to the human Tubulin Polymerization Promoting Proteins (TPPPs) that are implicated in the stabilization and bundling of microtubules (MTs) that are particularly important for neurons and are also implicated in synaptic organization and plasticity. No in vivo functional data exist that have addressed the role of TPPP in synapse organization in any system. Here, we present the phenotypic and functional characterization of ringer mutants during Drosophila larval neuromuscular junction (NMJ) synaptic development. ringer mutants show reduced synaptic growth and transmission and display phenotypic similarities and genetic interactions with the Drosophila homolog of vertebrate Microtubule Associated Protein (MAP)1B, futsch. Immunohistochemical and biochemical analyses show that individual and combined loss of Ringer and Futsch cause a significant reduction in MT loops at the NMJs and reduced acetylated-tubulin levels. Presynaptic over-expression of Ringer and Futsch causes elevated levels of acetylated-tubulin and significant increase in NMJ MT loops. These results indicate that Ringer and Futsch regulate synaptic MT organization in addition to synaptic growth. Together our findings may inform studies on the close mammalian homolog, TPPP, and provide insights into the role of MTs and associated proteins in synapse growth and organization
The Genetics of Neuropathic Pain from Model Organisms to Clinical Application.
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic
Neuronal Lamin regulates motor circuit integrity and controls motor function and lifespan
Neuronal aging involves a progressive decline in cognitive abilities and loss of motor function. Mutations in human Lamin genes (LMNA, LMNB1, LMNB2) lead to a wide-range of diseases including muscular dystrophy, peripheral neuropathy and progeria. Here we investigate the role of neuronal Lamin in regulating age-related phenotypes. Neuronal targeting of Lamin led to shortened lifespan, progressive impairment of motor function and loss of dopaminergic (DA) neurons within the protocerebral anterior medial (PAM) cluster in the Drosophila melanogaster brain. Loss of neuronal Lamin caused an age-related decline in neural physiology, with slower neurotransmission and increased chance of motor circuit failure with age. Unexpectedly, Lamin-dependent decline in motor function was specific for the chemical synapses of the dorsal longitudinal muscle (DLM). Together these findings highlight a central role for Lamin dysfunction in regulating neuronal survival and motor circuit physiology during aging
The brain microvasculature is a primary mediator of interferon-α neurotoxicity in human cerebral interferonopathies
Aicardi-GoutiĂšres syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)- production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN- remains unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN- in AGS, and confirmed neurotoxicity of intracerebral IFN- using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN- activated IFNAR signaling within cerebral endothelial cells, caused a distinctive cerebral small vessel disease similarly observed in individuals with AGS. MRI and single-molecule ELISA revealed that central and not peripheral IFN- was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped development of diffuse brain disease and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN- neurotoxicity in AGS, representing an accessible target for therapeutic intervention
Multi-ethnic GWAS and meta-analysis of sleep quality identify MPP6 as a novel gene that functions in sleep center neurons
Poor sleep quality can have harmful health consequences. Although many aspects of sleep are heritable, the understandings of genetic factors involved in its physiology remain limited. Here, we performed a genome-wide association study (GWAS) using the Pittsburgh Sleep Quality Index (PSQI) in a multi-ethnic discovery cohort (n = 2868) and found two novel genome-wide loci on chromosomes 2 and 7 associated with global sleep quality. A meta-analysis in 12 independent cohorts (100 000 individuals) replicated the association on chromosome 7 between NPY and MPP6. While NPY is an important sleep gene, we tested for an independent functional role of MPP6. Expression data showed an association of this locus with both NPY and MPP6 mRNA levels in brain tissues. Moreover, knockdown of an orthologue of MPP6 in Drosophila melanogaster sleep center neurons resulted in decreased sleep duration. With convergent evidence, we describe a new locus impacting human variability in sleep quality through known NPY and novel MPP6 sleep genes.Peer reviewe
Global redox proteome and phosphoproteome analysis reveals redox switch in Akt.
Protein oxidation sits at the intersection of multiple signalling pathways, yet the magnitude and extent of crosstalk between oxidation and other post-translational modifications remains unclear. Here, we delineate global changes in adipocyte signalling networks following acute oxidative stress and reveal considerable crosstalk between cysteine oxidation and phosphorylation-based signalling. Oxidation of key regulatory kinases, including Akt, mTOR and AMPK influences the fidelity rather than their absolute activation state, highlighting an unappreciated interplay between these modifications. Mechanistic analysis of the redox regulation of Akt identified two cysteine residues in the pleckstrin homology domain (C60 and C77) to be reversibly oxidized. Oxidation at these sites affected Akt recruitment to the plasma membrane by stabilizing the PIP3 binding pocket. Our data provide insights into the interplay between oxidative stress-derived redox signalling and protein phosphorylation networks and serve as a resource for understanding the contribution of cellular oxidation to a range of diseases
- âŠ