204 research outputs found

    The Broad-Band Spectrum and Infrared Variability of the Magnetar AXP 1E1048.1-5937

    Full text link
    We present photometry of the Anomalous X-ray pulsar 1E1048.1-5937 in the infrared and optical, taken at Magellan and the VLT. The object is detected in the I, J and Ks bands under excellent conditions. We find that the source has varied greatly in its infrared brightness and present these new magnitudes. No correlation is found between the infrared flux and spin-down rate, but the infrared flux and X-ray flux may be anti-correlated. Assuming nominal reddening values, the resultant spectral energy distribution is found to be inconsistent with the only other AXP SED available (for 4U0142+61). We consider the effect of the uncertainty in the reddening to the source on its SED. We find that although both the X-ray and infrared fluxes have varied greatly for this source, the most recent flux ratio is remarkably consistent with what is is found for other AXPs. Finally, we discuss the implications of our findings in the context of the magnetar model.Comment: 21 pages, 5 eps figures. Submitted to Ap

    Optical Detection of Two Intermediate Mass Binary Pulsar Companions

    Full text link
    We report the detection of probable optical counterparts for two Intermediate Mass Binary Pulsar (IMBP) systems, PSR J1528-3146 and PSR J1757-5322. Recent radio pulsar surveys have uncovered a handful of these systems with putative massive white dwarf companions, thought to have an evolutionary history different from that of the more numerous class of Low Mass Binary Pulsars (LMBPs) with He white dwarf companions. The study of IMBP companions via optical observations offers us several new diagnostics: the evolution of main sequence stars near the white-dwarf-neutron star boundary, the physics of white dwarfs close to the Chandrasekhar limit, and insights into the recycling process by which old pulsars are spun up to high rotation frequencies. We were unsuccessful in our attempt to detect optical counterparts of PSR J1141-6545, PSR J1157-5112, PSR J1435-6100, and PSR J1454-5846.Comment: 9 pages, 2 figures, accepted for publication in ApJ

    Massive Clumps in the NGC 6334 Star Forming Region

    Full text link
    We report observations of dust continuum emission at 1.2 mm toward the star forming region NGC 6334 made with the SEST SIMBA bolometer array. The observations cover an area of 2\sim 2 square degrees with approximately uniform noise. We detected 181 clumps spanning almost three orders of magnitude in mass (3\Msun6×103-6\times10^3 \Msun) and with sizes in the range 0.1--1.0 pc. We find that the clump mass function dN/dlogMdN/d\log M is well fit with a power law of the mass with exponent -0.6 (or equivalently dN/dMM1.6dN/dM \propto M^{-1.6}). The derived exponent is similar to those obtained from molecular line emission surveys and is significantly different from that of the stellar initial mass function. We investigated changes in the mass spectrum by changing the assumptions on the temperature distribution of the clumps and on the contribution of free-free emission to the 1.2 mm emission, and found little changes on the exponent. The Cumulative Mass Distribution Function is also analyzed giving consistent results in a mass range excluding the high-mass end where a power-law fit is no longer valid. The masses and sizes of the clumps observed in NGC 6334 indicate that they are not direct progenitors of stars and that the process of fragmentation determines the distribution of masses later on or occurs at smaller spatial scales. The spatial distribution of the clumps in NGC 6334 reveals clustering which is strikingly similar to that exhibited by young stars in other star forming regions. A power law fit to the surface density of companions gives Σθ0.62\Sigma\propto \theta^{-0.62}.Comment: 16 pages, 11 figures, 4 tables. To appear in the Astrophysical Journa

    High-spatial-resolution observations of NH3 and CH3OH towards the massive twin cores NGC6334 I & I(N)

    Full text link
    Molecular line observations of NH3 (J,K)=(1,1), (2,2) and CH3OH at 24.93GHz taken with the Australian Telescope Compact Array (ATCA) toward the massive twin cores NGC6334 I & I(N) reveal significant variations in the line emission between the two massive cores. The UCHII region/hot core NGC6334 I exhibits strong thermal NH3 and CH3OH emission adjacent to the UCHII region and coincident with two mm continuum peaks observed by Hunter et al. (in prep.). In contrast, we find neither compact NH3 nor thermal CH3OH line emission toward NGC6334 I(N). There, the NH3 emission is distributed over a broad region (>1') without a clear peak, and we find Class I CH3OH maser emission with peak brightness temperatures up to 7000K. The maser emission peaks appear to be spatially associated with the interfaces between the molecular outflows and the ambient dense gas. Peak NH3(1,1) line brightness temperatures >= 70K in both regions indicate gas temperatures of the same order. NH3 emission is also detected toward the outflow in NGC6334 I resulting in an estimated rotational temperature of Trot~19K. Furthermore, we observe CH3OH and NH3 absorption toward the UCHII region, the velocity structure is consistent with expanding molecular gas around the UCHII region. Thermal and kinematic effects possibly imposed from the UCHII region on the molecular core are also discussed.Comment: Accepted for the Astrophysical Journa

    An Optical Study of BG Geminorum: An Ellipsoidal Binary with an Unseen Primar Star

    Full text link
    We describe optical photometric and spectroscopic observations of the bright variable BG Geminorum. Optical photometry shows a pronounced ellipsoidal variation of the K0 I secondary, with amplitudes of ~0.5 mag at VRI and a period of 91.645 days. A deep primary eclipse is visible for wavelengths < 4400A; a shallower secondary eclipse is present at longer wavelengths. Eclipse timings and the radial velocity curve of the K0 secondary star indicate an interacting binary where a lobe-filling secondary, M_2 ~ 0.5 Msun, transfers material into a extended disk around a massive primary, M_1 ~ 4.5 Msun. The primary star is either an early B-type star or a black hole. If it did contain a black hole, BG Gem would be the longest period black hole binary known by a factor of 10, as well as the only eclipsing black hole binary system.Comment: 27 pages, includes 8 figures and 5 tables, accepted to A

    The highly polarized open cluster Trumpler 27

    Get PDF
    We have carried out multicolor linear polarimetry (UBVRI) of the brightest stars in the area of the open cluster Trumpler 27. Our data show a high level of polarization in the stellar light with a considerable dispersion, from P=4P = 4% to P=9.5P = 9.5%. The polarization vectors of the cluster members appear to be aligned. Foreground polarization was estimated from the data of some non-member objects, for which two different components were resolved: the first one associated with a dust cloud close to the Sun producing Pλmax=1.3P_{\lambda max}=1.3% and θ=146\theta=146 degrees, and a second component, the main source of polarization for the cluster members, originated in another dust cloud, which polarizes the light in the direction of θ=29.5\theta= 29.5 degrees. From a detailed analysis, we found that the two components have associated values EBV<0.45E_{B-V} < 0.45 for the first one, and EBV>0.75E_{B-V} > 0.75 for the other. Due the difference in the orientation of both polarization vectors, almost 90 degrees (180 degrees at the Stokes representation), the first cloud (θ146\theta \sim 146 degrees) depolarize the light strongly polarized by the second one (θ29.5\theta \sim 29.5 degrees).Comment: 12 Pages, 6 Figures, 2 tables (9 Pages), accepted for publication in A

    Transient Gamma Ray Spectrometer Measurements of Gamma-Ray Lines from Novae. I. Limits on the Positron Annihilation Line in Five Individual Novae

    Full text link
    The Transient Gamma Ray Spectrometer (TGRS) on board the WIND spacecraft has spent most of the interval 1995-1997 in a high-altitude orbit where gamma-ray backgrounds are low. Its high-resolution Ge spectrometer is thus able to detect weak lines which are slightly offset from stronger background features. One such line is predicted from nucleosynthesis in classical novae, where beta-decays on a time-scale of a few hours in an expanding envelope produce positrons that annihilate to generate a line which is blueshifted by a few keV away from the background annihilation line at 511 keV. The broad TGRS field of view contained five known Galactic novae during 1995 January - 1997 June, and we have searched the spectra taken around the times of these events for the blueshifted nova annihilation line. Although no definite detections were made, the method is shown to be sensitive enough to detect novae occurring on ONeMg-rich white dwarfs out to about 2.5 kpc.Comment: 27 pp. + 10 figs., or offprint mailed by request to [email protected]

    {Millimeter Multiplicity in NGC 6334 I and I(N)

    Get PDF
    Using the Submillimeter Array (SMA), we have imaged the 1.3 millimeter continuum emission at the center of the massive star-forming regions NGC 6334 I and I(N). In both regions, the SMA observations resolve the emission into multiple millimeter sources, with most of the sources clustered into areas only 10,000 AU in diameter. Toward NGC 6334 I, we find four compact sources: the two brightest (I-SMA1 and I-SMA2) are associated with previously-known ammonia cores; I-SMA3 is coincident with the peak of the compact HII region (NGC 6334 F); and I-SMA4 is a newly-discovered object. While I-SMA3 exhibits a mixture of free-free and dust emission, the rest of the objects are dust cores. Toward NGC 6334 I(N), seven compact dust cores are found, one of which is associated with a faint centimeter source. With the exception of I-SMA3, none of the millimeter sources have infrared counterparts in Spitzer Space Telescope 3-8 micron images. Using a simple physical model for the dust continuum emission, the estimated mass of interstellar material toward each of these compact objects is in the range of 3 to 66 solar masses. The total mass in the compact objects appears to be similar in I and I(N). The small size of these groups of sources suggest that these objects are proto-Trapezia forming in the centers of clusters of low to intermediate-mass stars.Comment: 6 pages, 3 figures, to appear in The Astrophysical Journa

    The solar photospheric abundance of hafnium and thorium. Results from CO5BOLD 3D hydrodynamic model atmospheres

    Get PDF
    Context: The stable element hafnium (Hf) and the radioactive element thorium (Th) were recently suggested as a suitable pair for radioactive dating of stars. The applicability of this elemental pair needs to be established for stellar spectroscopy. Aims: We aim at a spectroscopic determination of the abundance of Hf and Th in the solar photosphere based on a \cobold 3D hydrodynamical model atmosphere. We put this into a wider context by investigating 3D abundance corrections for a set of G- and F-type dwarfs. Method: High-resolution, high signal-to-noise solar spectra were compared to line synthesis calculations performed on a solar CO5BOLD model. For the other atmospheres, we compared synthetic spectra of CO5BOLD 3D and associated 1D models. Results: For Hf we find a photospheric abundance A(Hf)=0.87+-0.04, in good agreement with a previous analysis, based on 1D model atmospheres. The weak Th ii 401.9 nm line constitutes the only Th abundance indicator available in the solar spectrum. It lies in the red wing of an Ni-Fe blend exhibiting a non-negligible convective asymmetry. Accounting for the asymmetry-related additional absorption, we obtain A(Th)=0.09+-0.03, consistent with the meteoritic abundance, and about 0.1 dex lower than obtained in previous photospheric abundance determinations. Conclusions: Only for the second time, to our knowledge, has am non-negligible effect of convective line asymmetries on an abundance derivation been highlighted. Three-dimensional hydrodynamical simulations should be employed to measure Th abundances in dwarfs if similar blending is present, as in the solar case. In contrast, 3D effects on Hf abundances are small in G- to mid F-type dwarfs and sub-giants, and 1D model atmospheres can be conveniently used.Comment: A&A, in pres
    corecore