543 research outputs found

    Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.

    Get PDF
    Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography

    Phylogenetic informativeness reconciles ray-finned fish molecular divergence times

    Get PDF
    BACKGROUND: Discordance among individual molecular age estimates, or between molecular age estimates and the fossil record, is observed in many clades across the Tree of Life. This discordance is attributed to a variety of variables including calibration age uncertainty, calibration placement, nucleotide substitution rate heterogeneity, or the specified molecular clock model. However, the impact of changes in phylogenetic informativeness of individual genes over time on phylogenetic inferences is rarely analyzed. Using nuclear and mitochondrial sequence data for ray-finned fishes (Actinopterygii) as an example, we extend the utility of phylogenetic informativeness profiles to predict the time intervals when nucleotide substitution saturation results in discordance among molecular ages estimated. RESULTS: We demonstrate that even with identical calibration regimes and molecular clock methods, mitochondrial based molecular age estimates are systematically older than those estimated from nuclear sequences. This discordance is most severe for highly nested nodes corresponding to more recent (i.e., Jurassic-Recent) divergences. By removing data deemed saturated, we reconcile the competing age estimates and highlight that the older mtDNA based ages were driven by nucleotide saturation. CONCLUSIONS: Homoplasious site patterns in a DNA sequence alignment can systematically bias molecular divergence time estimates. Our study demonstrates that PI profiles can provide a non-arbitrary criterion for data exclusion to mitigate the influence of homoplasy on time calibrated branch length estimates. Analyses of actinopterygian molecular clocks demonstrate that scrutiny of the time scale on which sequence data is informative is a fundamental, but generally overlooked, step in molecular divergence time estimation

    Transverse-mode & polarization characteristics of double-fused 1.52 ÎŒm vertical-cavity lasers

    Get PDF
    AbstractWe report on the transverse mode and polarization characteristics of a novel 1.52 ÎŒm vertical-cavity laser that utilizes an InGaAsP strain-compensated quantum-well active layer and two AIAs/GaAs quarter-wave mirrors. The 6 and 8 ÎŒm diameter devices exhibit room-temperature pulsed threshold currents as low as 4 mA, and a maximum output power of 14 mW was measured on a 60 ÎŒm diameter device

    Two waves of colonization straddling the K–Pg boundary formed the modern reef fish fauna

    Get PDF
    Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous–Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction.Work was supported by NSF grant nos. DEB-1061981 and DEB-0717009 to P.C.W., DEB-1061806 and DEB-1110552 to T.J.N. and DEB-1060869 and EF-0732642 to W.L.S., and NERC grant no. NE/I005536/1 to M.F

    Effect of age and the APOE gene on metabolite concentrations in the posterior cingulate cortex.

    Get PDF
    Proton magnetic resonance spectroscopy (1H-MRS) has provided valuable information about the neurochemical profile of Alzheimer's disease (AD). However, its clinical utility has been limited in part by the lack of consistent information on how metabolite concentrations vary in the normal aging brain and in carriers of apolipoprotein E (APOE) Δ4, an established risk gene for AD. We quantified metabolites within an 8cm3 voxel within the posterior cingulate cortex (PCC)/precuneus in 30 younger (20-40 years) and 151 cognitively healthy older individuals (60-85 years). All 1H-MRS scans were performed at 3T using the short-echo SPECIAL sequence and analyzed with LCModel. The effect of APOE was assessed in a sub-set of 130 volunteers. Older participants had significantly higher myo-inositol and creatine, and significantly lower glutathione and glutamate than younger participants. There was no significant effect of APOE or an interaction between APOE and age on the metabolite profile. Our data suggest that creatine, a commonly used reference metabolite in 1H-MRS studies, does not remain stable across adulthood within this region and therefore may not be a suitable reference in studies involving a broad age-range. Increases in creatine and myo-inositol may reflect age-related glial proliferation; decreases in glutamate and glutathione suggest a decline in synaptic and antioxidant efficiency. Our findings inform longitudinal clinical studies by characterizing age-related metabolite changes in a non-clinical sample

    NEOWISE Observations of Near-Earth Objects: Preliminary Results

    Full text link
    With the NEOWISE portion of the \emph{Wide-field Infrared Survey Explorer} (WISE) project, we have carried out a highly uniform survey of the near-Earth object (NEO) population at thermal infrared wavelengths ranging from 3 to 22 ÎŒ\mum, allowing us to refine estimates of their numbers, sizes, and albedos. The NEOWISE survey detected NEOs the same way whether they were previously known or not, subject to the availability of ground-based follow-up observations, resulting in the discovery of more than 130 new NEOs. The survey's uniformity in sensitivity, observing cadence, and image quality have permitted extrapolation of the 428 near-Earth asteroids (NEAs) detected by NEOWISE during the fully cryogenic portion of the WISE mission to the larger population. We find that there are 981±\pm19 NEAs larger than 1 km and 20,500±\pm3000 NEAs larger than 100 m. We show that the Spaceguard goal of detecting 90% of all 1 km NEAs has been met, and that the cumulative size distribution is best represented by a broken power law with a slope of 1.32±\pm0.14 below 1.5 km. This power law slope produces ∌13,200±\sim13,200\pm1,900 NEAs with D>D>140 m. Although previous studies predict another break in the cumulative size distribution below D∌D\sim50-100 m, resulting in an increase in the number of NEOs in this size range and smaller, we did not detect enough objects to comment on this increase. The overall number for the NEA population between 100-1000 m are lower than previous estimates. The numbers of near-Earth comets will be the subject of future work.Comment: Accepted to Ap

    Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi

    Full text link
    Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3 have received a lot of attention because they exhibit a large thermopower, as well as striking similarities to heavy fermion Kondo insulators. Many proposals have been advanced, however, lacking quantitative methodologies applied to this problem, a consensus remained elusive to date. Here, we employ realistic many-body calculations to elucidate the impact of electronic correlation effects on FeSi. Our methodology accounts for all substantial anomalies observed in FeSi: the metallization, the lack of conservation of spectral weight in optical spectroscopy, and the Curie susceptibility. In particular we find a very good agreement for the anomalous thermoelectric power. Validated by this congruence with experiment, we further discuss a new physical picture of the microscopic nature of the insulator-to-metal crossover. Indeed, we find the suppression of the Seebeck coefficient to be driven by correlation induced incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic homologue RuSi, and predict that partially substituted Fe(1-x)Ru(x)Si will exhibit an increased thermopower at intermediate temperatures.Comment: 14 pages. Proceedings of the Hvar 2011 Workshop on 'New materials for thermoelectric applications: theory and experiment

    The motivations of external whistleblowers and their impact on the intention to blow the whistle again

    Get PDF
    The purpose of this study was to inquire into the relative importance of morality, cost‐benefit, and emotion as motivations for the decision to blow the whistle externally, and the effects of such factors as motivations, perceived negative consequences, and preferences for reform on the intention to blow the whistle again. Based on a literature review, we formulated some hypotheses and, to test them, we used the data collected from a survey of 127 external whistleblowers in South Korea. The results revealed that morality was the most important motivation, followed by emotion, and then cost‐benefit, which thus, seemed to be the least important for the whistleblowers. Morality as a motivation and the perceived negative consequences of whistleblowing had a significant effect on the intention to blow the whistle again. This study helps advance the understanding of the motivations behind whistleblowing and the factors that influence the intention to blow the whistle again

    Equilibrium configurations of two charged masses in General Relativity

    Get PDF
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.
    • 

    corecore