108 research outputs found

    Elevated baseline salivary protease activity may predict the steadiness of gingival inflammation during periodontal healing:a 12-week follow-up study on adults

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland.Aim was to profile salivary total protease, Porphyromonas gingivalis gingipain, and neutrophil elastase activities in relation to the resolution of periodontal inflammation, salivary macrophage-derived chemokine (MDC), and macrophage inflammatory protein-1α concentrations. Nonsurgical periodontal treatment was performed in 24 periodontitis patients in a prospective interventional study design. Periodontal clinical parameters were recorded, and stimulated saliva samples were collected at baseline and 2, 6, and 12 weeks after treatment. Salivary total protease and gingipain activities were determined using fluorogenic substrates, elastase activity by chromogenic substrates, and cytokine concentrations by Luminex immunoassay. For statistical analyses, generalized linear mixed models for repeated measures were used. Salivary total protease activity elevated, while gingival inflammation and plaque accumulation decreased 2 and 6 weeks after periodontal therapy. Salivary MDC concentration was elevated 12 weeks after periodontal treatment. Patients with elevated protease activities at baseline in comparison to patients with low baseline total protease activities, had higher levels of gingival inflammation before and after periodontal treatment. In conclusion, elevations in salivary total protease activity seem to be part of periodontal healing at its early phases. Higher levels of salivary total protease activities before periodontal treatment may predict the severity and steadiness of unresolved gingival inflammation

    Synthetic LPETG-containing peptide incorporation in the Staphylococcus aureus cell-wall in a sortase a- and growth phase-dependent manner

    Get PDF
    The majority of Staphylococcus aureus virulence- and colonization- associated surface proteins contain a pentapeptide recognition motif (LPXTG). This motif can be recognized and cleaved by sortase A (SrtA) which is a membrane-bound transpeptidase. After cleavage these proteins are covalently incorporated into the peptidoglycan. Therefore, SrtA plays a key role in S. aureus virulence. We aimed to generate a substrate mimicking this SrtA recognition motif for several purposes: to incorporate this substrate into the S. aureus cell-wall in a SrtA-dependent manner, to characterize this incorporation and to determine the effect of substrate incorporation on the incorporation of native SrtA-dependent cell-surface-associated proteins. We synthesized substrate containing the specific LPXTG motif, LPETG. As a negative control we used a scrambled version of this substrate, EGTLP and a S. aureus srtA knockout strain. Both substrates contained a fluorescence label for detection by FACScan and fluorescence microscope. A spreading assay and a competitive Luminex assay were used to determine the effect of substrate treatment on native LPXTG containing proteins deposition in the bacterial cell-wall. We demonstrate a SrtA-dependent covalent incorporation of the LPETG-containing substrate in wild type S. aureus strains and several other Gram-positive bacterial species. LPETG-containing substrate incorporation in S. aureus was growth phase-dependent and peaked at the stationary phase. This incorporation negatively correlated with srtA mRNA expression. Exogenous addition of the artificial substrate did not result in a decreased expression of native SrtA substrates (e.g. clumping factor A/B and protein A) nor induced a srtA knockout phenotype

    DMBT1 Inhibition of Pseudomonas Aeruginosa Twitching Motility Involves its N-glycosylation and cannot be Conferred by the Scavenger Receptor Cysteine-Rich Bacteria-Binding Peptide Domain.

    Get PDF
    The scavenging capacity of glycoprotein DMBT1 helps defend mucosal epithelia against microbes. DMBT1 binding to multiple bacterial species involves its conserved Scavenger Receptor Cysteine-Rich (SRCR) domains, localized to a 16-mer consensus sequence peptide, SRCRP2. Previously, we showed that DMBT1 bound Pseudomonas aeruginosa pili, and inhibited twitching motility, a pilus-mediated movement important for virulence. Here, we determined molecular characteristics required for twitching motility inhibition. Heat-denatured DMBT1 lost capacity to inhibit twitching motility and showed reduced pili binding (~40%). Size-exclusion chromatography of Lys-C-digested native DMBT1 showed that only high-Mw fractions retained activity, suggesting involvement of the N-terminal containing repeated SRCR domains with glycosylated SRCR-Interspersed Domains (SIDs). However, individual or pooled consensus sequence peptides (SRCRPs 1 to 7) showed no activity and did not bind P. aeruginosa pili; nor did recombinant DMBT1 (aa 1-220) or another SRCR-rich glycoprotein, CD163. Enzymatic de-N-glycosylation of DMBT1, but not de-O-glycosylation, reduced its capacity to inhibit twitching motility (~57%), without reducing pili binding. Therefore, DMBT1 inhibition of P. aeruginosa twitching motility involves its N-glycosylation, its pili-binding capacity is insufficient, and it cannot be conferred by the SRCR bacteria-binding peptide domain, either alone or mixed with other unlinked SRCRPs, suggesting an additional mechanism for DMBT1-mediated mucosal defense

    Gingival tissue human beta-defensin levels in relation to infection and inflammation.

    Get PDF
    Aim To profile gingival tissue levels of human beta-defensin (hBD)-2 and hBD-3 in relation to gingival inflammation, Th17-related cytokine concentrations, Porphyromonas gingivalis counts, and gingipain and total protease activities. Materials and Methods Gingival tissue and subgingival plaque samples were collected from 21 periodontitis patients including 48 periodontal pocket sites with marginal, mild, or moderate to severe inflammation. hBD levels were determined by immunodetection, P. gingivalis counts with real-time polymerase chain reaction, protease activities with fluorogenic substrates, and cytokine concentrations with Luminex technique. Data were statistically analysed using Kruskal-Wallis and Mann-Whitney U tests and Spearman correlation coefficients. Results Subgingival plaque counts of P. gingivalis (p = .001) and gingipain activity (p <.001), as well as interleukin (IL)-1 beta (p = .012), IL-10 (p = .024), IL-17A (p = .002), IL-17F (p = .006), and IL-23 (p = .036) concentrations were elevated in severely inflamed sites, whereas no change was observed in hBD-2 and hBD-3 levels. Negative correlations were found between protease activity and hBD-2 (p = .033) and hBD-3(p = .003) levels. Conclusions Shift in gingival inflammation from marginal to mild stage is related to elevations in subgingival plaque P. gingivalis counts and gingipain activity, but not to tissue hBD levels. Negative correlations between hBDs and total protease activity suggest the degradation of these antimicrobial peptides in progressed inflammation.Peer reviewe

    Staphylococcus aureus sortase a-mediated incorporation of peptides: Effect of peptide modification on incorporation

    Get PDF
    The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 ÎŒM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 ÎŒM, 100 ÎŒM and 250 ÎŒM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall

    Salivary Total Protease Activity Based on a Broad-Spectrum Fluorescence Resonance Energy Transfer Approach to Monitor Induction and Resolution of Gingival Inflammation

    Get PDF
    OBJECTIVE: Salivary total protease and chitinase activities were measured by a broad-spectrum fluorescence resonance energy transfer approach as predictors of induction and resolution of gingival inflammation in healthy individuals by applying an experimental human gingivitis model. METHODS: Dental biofilm accumulated (21 days, Induction Phase) by omitting oral hygiene practices followed by a 2-week Resolution Phase to restore gingival health in an experimental gingivitis study. Plaque accumulation, as assessed by the Turesky Modification of the Quigley-Hein Plaque Index (TQHPI), and gingival inflammation, assessed using the Modified Gingival Index (MGI), scores were recorded and unstimulated saliva was collected weekly. Saliva was analysed for total protein, albumin, total protease activity and chitinase activity (n = 18). RESULTS: The TQHPI and MGI scores, as well as total protease activity, increased until day 21. After re-establishment of oral hygiene, gingival inflammation levels returned to values similar to baseline (day 0). Levels of protease activity decreased significantly, but not to baseline values. Furthermore, 'fast' responders, who responded immediately to plaque, exhibited significantly higher proteolytic activity throughout the experimental course than 'slow' responders, who showed a lagged inflammatory response. CONCLUSION: The results indicate that differential inflammatory responses encompass inherent variations in total salivary proteolytic activities, which could be further utilised in contemporary diagnostic, prognostic and treatment modalities for periodontal diseases

    Gingival Tissue Human Beta-Defensin Levels in Relation to Infection and Inflammation

    Get PDF
    AimTo profile gingival tissue levels of human beta‐defensin (hBD)‐2 and hBD‐3 in relation to gingival inflammation, Th17‐related cytokine concentrations, Porphyromonas gingivalis counts, and gingipain and total protease activities.Materials and MethodsGingival tissue and subgingival plaque samples were collected from 21 periodontitis patients including 48 periodontal pocket sites with marginal, mild, or moderate to severe inflammation. hBD levels were determined by immunodetection, P. gingivalis counts with real‐time polymerase chain reaction, protease activities with fluorogenic substrates, and cytokine concentrations with Luminex technique. Data were statistically analysed using Kruskal–Wallis and Mann–Whitney U tests and Spearman correlation coefficients.ResultsSubgingival plaque counts of P. gingivalis (p = .001) and gingipain activity (p p = .012), IL‐10 (p = .024), IL‐17A (p = .002), IL‐17F (p = .006), and IL‐23 (p = .036) concentrations were elevated in severely inflamed sites, whereas no change was observed in hBD‐2 and hBD‐3 levels. Negative correlations were found between protease activity and hBD‐2 (p = .033) and hBD‐3(p = .003) levels.ConclusionsShift in gingival inflammation from marginal to mild stage is related to elevations in subgingival plaque P. gingivalis counts and gingipain activity, but not to tissue hBD levels. Negative correlations between hBDs and total protease activity suggest the degradation of these antimicrobial peptides in progressed inflammation.</p

    Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium

    Get PDF
    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium-harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis, M. leprae, M. avium, etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we show that peptides derived from bovine lactoferricin (LFcin) improve the antimicrobial activity of ethambutol against Mycobacterium avium growing inside macrophages. Moreover, the d-enantiomer of a short version of lactoferricin containing amino acids 17 to 30 (d-LFcin17-30) causes intramacrophagic death of M. avium by increasing the formation of lysosomes and autophagosomes. This work opens the way to the use of lactoferricin-derived peptides to treat infections caused by mycobacteria and highlights important modulatory effects of d-FLcin17-30 on macrophages, which may be useful under other conditions in which macrophage activation is needed.This research received funding support from the Fundacao Para a Ciencia e Tecnologia, European Social Funds, Programa Operacional Regional do Norte (ON.2-O Novo Norte), under the Quadro de Referencia Estrategico Nacional (QREN), the Fundo Europeu de Desenvolvimento Regional (Feder), and the Programa Operacional da Competitividade e Internacionalizacao (POCI) under COMPETE 2020 (grant SFRH/BD/77564/2011 to T.S.; grant SFRH/BPD/101405/2014 to A.C.M.; grant SFRH/BD/79874/2011 to T.M.; grant IF/00092/2014 to N.V.; grant PTDC/IMI-MIC/1683/2014 to M.S.G.; grant UID/MULTI/04378/2013 POCI-01-0145-FEDER-007728 to M.R., P.G., and N.V.; grant UID/QUI/0081/2013 POCI-01-0145-FEDER-006980 to M.B.; grant NORTE-07-0124-FEDER-000002-Host-Pathogen Interactions to P.N.R.; grant NORTE-07-0162-FEDER-000111 to P.G.; grant NORTE-07-0124-FEDER-000066 to M.R.; and grant NORTE-01-0145-FEDER-000024-DESignBIOtechHealth to P.G.). This work also benefited from a grant from the University of Amsterdam for research into the focal point Oral Infections and Inflammation, given to J.G.M.B. and K.N
    • 

    corecore