18 research outputs found

    Antibacterial Oligomeric Polyphenols from the Green Alga Cladophora socialis

    Get PDF
    A series of oligomeric phenols including the known natural product 3,4,3′,4′-tetrahydroxy-1,1′-biphenyl (3), the previously synthesized 2,3,8,9-tetrahydroxybenzo[c]-chromen-6-one (4), and eight new related natural products, cladophorols B−I (5−12), were isolated from the Fijian green alga Cladophora socialis and identified by a combination of NMR spectroscopy, mass spectrometric analysis, and computational modeling using DFT calculations. J-resolved spectroscopy and line width reduction by picric acid addition aided in resolving the heavily overlapped aromatic signals. A panel of Gram-positive and Gram-negative pathogens used to evaluate pharmacological potential led to the determination that cladophorol C (6) exhibits potent antibiotic activity selective toward methicillin-resistant Staphylococcus aureus (MRSA) with an MIC of 1.4 μg/mL. Cladophorols B (5) and D−H (7−11) had more modest but also selective antibiotic potency. Activities of cladophorols A−I (4−12) were also assessed against the asexual blood stages of Plasmodium falciparum and revealed cladophorols A (4) and B (5) to have modest activity with EC50 values of 0.7 and 1.9 μg/mL, respectively

    Data from: Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia

    No full text
    The tropical oligotrophic oceanic areas are characterized by high water transparency and annual solar radiation. Under these conditions, a large number of phylogenetically diverse mesozooplankton species living in the surface waters (neuston) are found to be blue pigmented. In the present study, we focused on understanding the metabolic and genetic basis of the observed blue phenotype functional equivalence between the blue pigmented organisms from the phylum Arthropoda, subclass copepoda (Acartia fossae) and the phylum Chordata, class appendicularia (Oikopleura dioica) in the Red Sea. Previous studies have shown that carotenoid protein complexes are responsible for blue coloration in crustaceans. Therefore, we performed carotenoid metabolic profiling using both targeted and non-targeted (high-resolution mass spectrometry) approaches in four different blue-pigmented genera of copepods and one blue-pigmented species of appendicularia. Astaxanthin was found to be the principal carotenoid in all species. The pathway analysis showed that all species can synthesize astaxanthin from β-carotene, ingested from dietary sources, via 3-hydroxyechinenone, canthaxanthin, zeaxanthin, adonirubin or adonixanthin. Further, using de novo assembled transcriptome of blue A. fossae (subclass copepoda) we identified highly expressed homologous β-carotene hydroxylase enzymes and carotenoid binding proteins responsible for astaxanthin formation and the blue phenotype. In blue O. dioica (class appendicularia), corresponding putative genes were identified from the reference genome. Collectively, our data provide molecular evidences for the bioconversion and accumulation of blue astaxanthin-protein complexes underpinning the observed ecological functional equivalence and adaptive convergence among neustonic mesozooplankton

    Tree_Fig_6_Mojib_et_al.nexus.con

    No full text
    Phylogenetic analysis of lipocalin superfamily proteins from various organisms

    Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica

    No full text
    In this study, we report the distribution of microbial taxa and their predicted metabolic functions observed in the top (U1), middle (U2), and inner (U3) decadal growth laminae of a unique large conical microbial mat from perennially ice-covered Lake Untersee of East Antarctica, using NextGen sequencing of the 16S rRNA gene and bioinformatics tools. The results showed that the U1 lamina was dominated by cyanobacteria, specifically Phormidium sp., Leptolyngbya sp., and Pseudanabaena sp. The U2 and U3 laminae had high abundances of Actinobacteria, Verrucomicrobia, Proteobacteria, and Bacteroidetes. Closely related taxa within each abundant bacterial taxon found in each lamina were further differentiated at the highest taxonomic resolution using the oligotyping method. PICRUSt analysis, which determines predicted KEGG functional categories from the gene contents and abundances among microbial communities, revealed a high number of sequences belonging to carbon fixation, energy metabolism, cyanophycin, chlorophyll, and photosynthesis proteins in the U1 lamina. The functional predictions of the microbial communities in U2 and U3 represented signal transduction, membrane transport, zinc transport and amino acid-, carbohydrate-, and arsenic- metabolisms. The Nearest Sequenced Taxon Index (NSTI) values processed through PICRUSt were 0.10, 0.13, and 0.11 for U1, U2, and U3 laminae, respectively. These values indicated a close correspondence with the reference microbial genome database, implying high confidence in the predicted metabolic functions of the microbial communities in each lamina. The distribution of microbial taxa observed in each lamina and their predicted metabolic functions provides additional insight into the complex microbial ecosystem at Lake Untersee, and lays the foundation for studies that will enhance our understanding of the mechanisms responsible for the formation of these unique mat structures and their evolutionary significance

    Alignment_Fig.5_Mojib_et_al

    No full text
    Phylogenetic relationships of β-carotene hydroxylases from various organisms

    Alignment_Fig_6_Mojib_et_al

    No full text
    Phylogenetic analysis of lipocalin superfamily proteins from various organisms
    corecore