40 research outputs found

    Mitochondria-dependent signalling pathway are involved in the early process of radiation-induced bystander effects

    Get PDF
    Bystander effects induced by cytoplasmic irradiation have been reported recently. However, the mechanism(s) underlying, such as the functional role of mitochondria, is not clear. In the present study, we used either mtDNA-depleted (ρ0) AL or normal (ρ+) AL cells as irradiated donor cells and normal human skin fibroblasts as receptor cells in a series of medium transfer experiments to investigate the mitochondria-related signal process. Our results indicated that mtDNA-depleted cells or normal AL cells treated with mitochondrial respiratory chain function inhibitors had an attenuated γ-H2AX induction, which indicates that mitochondria play a functional role in bystander effects. Moreover, it was found that treatment of normal AL donor cells with specific inhibitors of NOS, or inhibitor of mitochondrial calcium uptake (ruthenium red) significantly decreased γ-H2AX induction and that radiation could stimulate cellular NO and O2•− production in irradiated ρ+ AL cells, but not in ρ0 AL cells. These observations, together with the findings that ruthenium red treatment significantly reduced the NO and O2•− levels in irradiated ρ+ AL cells, suggest that radiation-induced NO derived from mitochondria might be an intracellular bystander factor and calcium-dependent mitochondrial NOS might play an essential role in the process

    Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steroid and xenobiotic receptor, SXR, is an orphan nuclear receptor that regulates metabolism of diverse dietary, endobiotic, and xenobiotic compounds. SXR is expressed at high levels in the liver and intestine, and at lower levels in breast and other tissues where its function was unknown. Since many breast cancer preventive and therapeutic compounds are SXR activators, we hypothesized that some beneficial effects of these compounds are mediated through SXR.</p> <p>Methods</p> <p>To test this hypothesis, we measured proliferation of breast cancer cells in response to SXR activators and evaluated consequent changes in the expression of genes critical for proliferation and cell-cycle control using quantitative RT-PCR and western blotting. Results were confirmed using siRNA-mediated gene knockdown. Statistical analysis was by t-test or ANOVA and a P value ≤ 0.05 was considered to be significant.</p> <p>Results</p> <p>Many structurally and functionally distinct SXR activators inhibited the proliferation of MCF-7 and ZR-75-1 breast cancer cells by inducing cell cycle arrest at the G1/S phase followed by apoptosis. Decreased growth in response to SXR activation was associated with stabilization of p53 and up-regulation of cell cycle regulatory and pro-apoptotic genes such as p21, PUMA and BAX. These gene expression changes were preceded by an increase in inducible nitric oxide synthase and nitric oxide in these cells. Inhibition of iNOS blocked the induction of p53. p53 knockdown inhibited up-regulation of p21 and BAX. We infer that NO is required for p53 induction and that p53 is required for up-regulation of cell cycle regulatory and apoptotic genes in this system. SXR activator-induced increases in iNOS levels were inhibited by siRNA-mediated knockdown of SXR, indicating that SXR activation is necessary for subsequent regulation of iNOS expression.</p> <p>Conclusion</p> <p>We conclude that activation of SXR is anti-proliferative in p53 wild type breast cancer cells and that this effect is mechanistically dependent upon the local production of NO and NO-dependent up-regulation of p53. These findings reveal a novel biological function for SXR and suggest that a subset of SXR activators may function as effective therapeutic and chemo-preventative agents for certain types of breast cancers.</p

    Primjena i kompozicija individualiziranih zaštitnih elemenata linijske grafike u projektiranju novčanica

    Get PDF
    Proces stvaranja novčanica je dugotrajan i složen, što rezultira kompleksnim rješenjima koja predstavljaju pravo remek djelo grafike. Novčanice su prožete brojnim detaljima i prenose različite informacije koje se analiziraju u teorijskom dijelu rada. Prvotno se postavljaju kriteriji po kojima se izrađuje detaljna analiza velikog broja zaštitnih i konceptualnih elemenata na primjerima novčanica. Time je prikazan okvirni povijesni pregled razvoja novčanica i utjecaji kojima je bio izložen. Analizira se međuovisnost dizajna o sigurnosnim značajkama, te se ispituje razina informiranosti javnosti o zaštitama na novčanicama. Zaključuje se koje metode zaštite su najučinkovitije, te kako šira javnost najčešće provjerava autentičnost novčanica. U eksperimentalnom dijelu rada se na temelju donesenih zaključaka iz teorijskog dijela izrađuje prototip novčanice koja je u najvećoj mjeri prožeta individualiziranim PostScript programskim rješenjima elemenata linijske grafike (rozete, mikrotekst, zaštitne linije, brojevi apoena), a od ostalih zaštita modeliran je individualizirani raster transformacijom matematičkog izraza u PostScript programski kod. Sve ostale zaštite tipične za novčanice simulirane su alatima za rastersku i vektorsku grafiku. U radu se ispituje utjecaj kompozicije zaštitnih elemenata na prepoznavanje autentičnosti novčanica, te efikasnost samih individualiziranih programskih rješenja

    Analysis of hematological parameters in patients treated with ketogenic diet due to drug-resistant epilepsy

    No full text
    Benefits of the ketogenic diet (KD) in epileptic patients are well known while less is known about the nutritional risks of the diet and its potential impacts on biochemical nutritional status. In this study, we aimed to evaluate the hematological parameters of patients who have drug-resistant epilepsy and are treated with KD. Fifty-three patients with drug-resistant epilepsy (mean age 7.4 +/- 4.4 years [2-18], 23 [43.4%] female) were included in the study. Demographic and laboratory data of the patients were retrospectively analyzed at baseline and Month 6 and Month 12 of the treatment. Repeated measures ANOVA (post hoc Bonferroni correction) and Friedman test were used to assess the changes in data during the treatment. Mean hemoglobin levels increased by 0.594 g/dL after 6 months (p = 0.001) and by 0.602 g/dL after 12 months of the treatment (p = 0.002). Mean hematocrit level was found to be significantly increased at Month 6 and 12 of the treatment compared to baseline [F(2,94) = 8.9, p < 0.0001]. An increase in MCV levels was determined with the KD treatment [F(2,94) = 19.7, p < 0.0001]. Mean level of vitamin B12 was found to be significantly increased in Month 12 of treatments compared to Month 6 [F(1.686,72.479) = 3.472, p = 0.035]. There was no significant effect of KD on other hematological parameters (red blood cell, white blood cell and platelet counts, serum iron, total iron-binding capacity, transferrin saturation, and ferritin and folic acid levels). We can conclude that KD increases levels of hemoglobin, hematocrit, MCV, and serum vitamin B12 in patients with intractable epilepsy. Prospective, multi-center, longitudinal studies are needed to confirm our results

    Arf6-driven cell invasion is intrinsically linked to TRAK1-mediated mitochondrial anterograde trafficking to avoid oxidative catastrophe

    Get PDF
    Mitochondria dynamically alter their subcellular localization during cell movement, although the underlying mechanisms remain largely elusive. The small GTPase Arf6 and its signaling pathway involving AMAP1 promote cell invasion via integrin recycling. Here we show that the Arf6-AMAP1 pathway promote the anterograde trafficking of mitochondria. Blocking the Arf6-based pathway causes mitochondrial aggregation near the microtubule-organizing center, and subsequently induces detrimental reactive oxygen species (ROS) production, likely via a mitochondrial ROS-induced ROS release-like mechanism. The Arf6-based pathway promotes the localization of ILK to focal adhesions to block RhoT1-TRAK2 association, which controls mitochondrial retrograde trafficking. Blockade of the RhoT1-TRAK1 machinery, rather than RhoT1-TRAK2, impairs cell invasion, but not two-dimensional random cell migration. Weakly or non-invasive cells do not notably express TRAK proteins, whereas they clearly express their mRNAs. Our results identified a novel association between cell movement and mitochondrial dynamics, which is specific to invasion and is necessary for avoiding detrimental ROS production
    corecore