27 research outputs found

    Extraction and measurement of cosmogenic in situ 14C from quartz

    Get PDF
    Unlike 14C that is produced in the upper atmosphere by the 14N(n,p)14C reaction, in situ 14C is produced within minerals at the earth’s surface by a number of spallation reactions including 17O(n,α)14C, 16O(n,2pn)14C and 14N(n,p)14C (Gosse & Phillips, 2001). A range of cosmic-ray produced radionuclides including 10Be, 26Al and 36Cl, which are formed in surface minerals, are now used to establish ages for formerly un-dateable deposits, however, their long half-lives render them insensitive to recent events and rapidly eroding deposits. Pure quartz (SiO2) is an ideal mineral for in situ 14C dating due to its lack of cleavage in the mineral grains, ensuring resistance to contamination by atmospheric 14C. This resistance to weathering under surface conditions, coupled with the relatively short half-life of 5730 years, provides a unique cosmogenic nuclide tool for the measurement of rapid erosion rates (>10-3 cm yr-1) and events occurring over the past 25,000 yr (Lal, 1991). Furthermore, recent advances in 14C dating by AMS have provided the opportunity to measure the very small quantities of carbon that can be extracted from quartz. The vacuum system that I have designed and built to extract carbon from quartz is based on that used at the University of Arizona (Lifton 1997), which uses resistance heating of samples to a temperature of approximately 1100ºC in the presence of lithium metaborate (LiBO2) to fuse the quartz. In the presence of O2, any carbon present is released and oxidised to CO2, which is subsequently cryogenically trapped and graphitised for AMS measurement. In previous work (Naysmith et al., 2004) it has been shown that the extraction system produced a stable blank value but when running Lifton’s PP-4 standard sample, the system generated larger volumes of CO2 but only half the number of carbon atoms compared to Lifton. In this study, new data for CO2 blank values, system blank values and new PP-4 data will be presented. The original vacuum system has been modified to try and reduce the volume of CO2 produced from each combustion. Further improvements in the cleaning and handling of the quartz sleeves before they were used in the extraction process were implemented in an attempt to reduce the contamination associated with the combustion stage of the process. The CO2 purification has been improved and results show that realistic volumes of CO2 are being generated from quartz samples. A new-shielded quartz sample has been obtained from a depth of greater than 250 m. The results from this show it to have a very low 14C atom content. A new sample of PP-4 quartz was obtained from the University of Arizona and the results (in 14C atoms g-1 SiO2) agree with values published by Lifton (Miller et al., 2006) for this sample. The data from both these samples are included in this study

    Why do we need 14C inter-comparisons?: The Glasgow 14C inter-comparison series, a reflection over 30 years

    Get PDF
    Radiocarbon measurement is a well-established, routinely used, yet complex series of inter-linked procedures. The degree of sample pre-treatment varies considerably depending on the material, the methods of processing pre-treated material vary across laboratories and the detection of 14C at low levels remains challenging. As in any complex measurement process, the questions of quality assurance and quality control become paramount, both internally, i.e. within a laboratory and externally, across laboratories. The issue of comparability of measurements (and thus bias, accuracy and precision of measurement) from the diverse laboratories is one that has been the focus of considerable attention for some time, both within the 14C community and the wider user communities. In the early years of the technique when there was only a small number of laboratories in existence, inter-comparisons would function on an ad hoc basis, usually involving small numbers of laboratories (e.g.Otlet et al, 1980). However, as more laboratories were set-up and the detection methods were further developed (e.g. new AMS facilities), the need for more systematic work was recognised. The international efforts to create a global calibration curve also requires the use of data generated by different laboratories at different times, so that evidence of laboratory offsets is needed to inform curve formation. As a result of these factors, but also as part of general good laboratory practice, including laboratory benchmarking and quality assurance, the 14C community has undertaken a wide-scale, far-reaching and evolving programme of global inter-comparisons, to the benefit of laboratories and users alike. This paper looks at some of that history and considers what has been achieved in the past 30 years

    A new database program installed at the SUERC radiocarbon laboratory

    Get PDF
    The SUERC Radiocarbon Dating Laboratory has recently replaced its spreadsheet-based record keeping with a new database program, custom designed to help laboratory staff manage the high throughput of nearly 5000 cathodes in the past year. The system can accept data from a variety of sources in addition to manual entry; experimental results can be uploaded from spreadsheets, while integration with graphitisation lines means that graphite yields are automatically recorded. The system is able to pass radiocarbon results directly to OxCal 4 for calibration, with the resulting plots incorporated into the dating certificates issued to submitters. There are also benefits to submitters, with electronic sample submission both eliminating transcription errors and speeding up the logging-in process which keeps turnaround times down. For bone samples, data on collagen yields are now stored electronically and are more readily obtainable from the laboratory. The new SUERC Radiocarbon Dating Laboratory database will make a significant contribution to maintaining the high quality of results produced by the laboratory, aiding staff in tracking sample progress and monitoring quality assurance (QA) samples going through the laboratory, eliminating transcription errors and making communication easier between laboratory staff and sample submitters

    Life after SIRI- where next?

    Get PDF
    Radiocarbon (14C) dating is routinely used, yet occasionally, issues still arise surrounding laboratory offsets, and unexpected and unexplained variability. Quality assurance and quality control have long been recognized as important in addressing the two issues of comparability (or bias, accuracy) and uncertainty or variability (or precision) of measurements both within and between laboratories (Long and Kalin 1990). The 14C community and the wider user communities have supported interlaboratory comparisons as one of several strands to ensure the quality of measurements (Scott et al. 2018). The nature of the intercomparisons has evolved as the laboratory characteristics have changed s. The next intercomparison is currently being planned to take place in 2019–2020. The focus of our work in designing intercomparisons is to (1) assist laboratories by contributing to their QA/QC processes, (2) supplement and enhance our suite of reference materials that are available to laboratories, (3) provide consensus 14C values with associated (small) uncertainties for performance checking, and (4) provide estimates of laboratory offsets and error multipliers which can inform subsequent modeling and laboratory improvements

    A New Database Program Installed at the SUERC Radiocarbon Laboratory

    Get PDF

    Humics - their history in the radiocarbon inter-comparisons studies

    Get PDF
    Over the past 30 years, the format of the radiocarbon (14C) intercomparison studies has changed, however, the selection of sample types used in these studies has remained constant—namely, natural and routinely dated materials that could subsequently be used as in-house reference materials. One such material is peat which has been used 12 times, starting with the ICS in 1988. Peat from Iceland (TIRI), Ellanmore (TIRI), Letham Moss (ICS, VIRI, and SIRI), and St Bees, UK (FIRI and VIRI) have been used, as well as a near-background peat from Siberia. In the main, these peat samples have been provided as the humic acid fraction, with the main advantage being that the humic acid is extracted in solution and then precipitated (the solution phase providing the homogenisation) which is a key requirement for a reference material. In this paper, we will revisit the peat results and explore their findings. In addition, for the last 8 years, the Letham Moss sample has been used in the SUERC 14C laboratory as an in-house standard or reference material. This has resulted in several thousand measurements. Such a rich data set is explored to illustrate the benefits arising from the intercomparison program

    Local variance of atmospheric 14C concentrations around Fukushima Dai-ichi Nuclear Power Plant from 2010 to 2012

    Get PDF
    Radiocarbon (14C) has been measured in single tree ring samples collected from the southwest of the Fukushima Dai-ichi Nuclear Power Plant. Our data indicate south-westwards dispersion of radiocarbon and the highest 14C activity observed so far in the local environment during the 2011 accident. The abnormally high 14C activity in the late wood of 2011 ring may imply an unknown source of radiocarbon nearby after the accident. The influence of 14C shrank from 30 km during normal reactor operation to 14 km for the accident in the northwest of FDNPP, but remains unclear in the southwest

    Radiocarbon releases from the 2011 Fukushima nuclear accident

    Get PDF
    Radiocarbon activities were measured in annual tree rings for the years 2009 to 2015 from Japanese cedar trees (Cryptomeria japonica) collected at six sites ranging from 2.5–38 km northwest and north of the Fukushima Dai-ichi nuclear power plant. The 14C specific activity varied from 280.4 Bq kg−1 C in 2010 to 226.0 Bq kg−1 C in 2015. The elevated 14C activities in the 2009 and 2010 rings confirmed 14C discharges during routine reactor operations, whereas those activities that were indistinguishable from background in 2012–2015 coincided with the permanent shutdown of the reactors after the accident in 2011. High-resolution 14C analysis of the 2011 ring indicated 14C releases during the Fukushima accident. The resulted 14C activity decreased with increasing distance from the plant. The maximum 14C activity released during the period of the accident was measured 42.4 Bq kg−1 C above the natural ambient 14C background. Our findings indicate that, unlike other Fukushima-derived radionuclides, the 14C released during the accident is indistinguishable from ambient background beyond the local environment (~30 km from the plant). Furthermore, the resulting dose to the local population from the excess 14C activities is negligible compared to the dose from natural/nuclear weapons sources

    Application of <sup>14</sup>C analyses to source apportionment of carbonaceous PM<sub>2.5</sub> in the UK

    Get PDF
    Determination of the radiocarbon (&lt;sup&gt;14&lt;/sup&gt;C) content of airborne particulate matter yields insight into the proportion of the carbonaceous material derived from fossil and contemporary carbon sources. Daily samples of PM&lt;sub&gt;2.5&lt;/sub&gt; were collected by high-volume sampler at an urban background site in Birmingham, UK, and the fraction of &lt;sup&gt;14&lt;/sup&gt;C in both the total carbon, and in the organic and elemental carbon fractions, determined by two-stage combustion to CO&lt;sub&gt;2&lt;/sub&gt;, graphitisation and quantification by accelerator mass spectrometry. OC and EC content was also determined by Sunset Analyzer. The mean fraction contemporary TC in the PM&lt;sub&gt;2.5&lt;/sub&gt; samples was 0.50 (range 0.27–0.66, n = 26). There was no seasonality to the data, but there was a positive trend between fraction contemporary TC and magnitude of SOC/TC ratio and for the high values of these two parameters to be associated with air-mass back trajectories arriving in Birmingham from over land. Using a five-compartment mass balance model on fraction contemporary carbon in OC and EC, the following average source apportionment for the TC in these PM&lt;sub&gt;2.5&lt;/sub&gt; samples was derived: 27% fossil EC; 20% fossil OC; 2% biomass EC; 10% biomass OC; and 41% biogenic OC. The latter category will comprise, in addition to BVOC-derived SOC, other non-combustion contemporary carbon sources such as biological particles, vegetative detritus, humic material and tyre wear. The proportion of total PM&lt;sub&gt;2.5&lt;/sub&gt; at this location estimated to derive from BVOC-derived secondary organic aerosol was 9–29%. The findings from this work are consistent with those from elsewhere in Europe and support the conclusion of a significant and ubiquitous contribution from non-fossil biogenic sources to the carbon in terrestrial aerosol
    corecore