

Scott, E. M., Naysmith, P. and Cook, G. T. (2019) Life after SIRI- where next? *Radiocarbon*, (doi:10.1017/RDC.2019.10)

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/171819/

Deposited on: 23 October 2018

Enlighten – Research publications by members of the University of Glasgow <u>http://eprints.gla.ac.uk</u> Life after SIRI- where next?

E. Marian Scott¹, Philip Naysmith² and Gordon T. Cook² ¹School of Mathematics and Statistics, University of Glasgow, Glasgow, UK ²SUERC, University of Glasgow, East Kilbride, UK Corresponding author: E Marian Scott: marian.scott@glasgow.ac.uk

Abstract

Radiocarbon dating is very well-established and routinely used, yet occasionally, issues still arise surrounding laboratory offsets, and unexpected and unexplained variability. The degree of sample pre-treatment varies considerably depending on the material, the methods of processing pre-treated material vary across laboratories and the detection of ¹⁴C at low levels remains challenging. Quality assurance and quality control have long been recognised as important in addressing the two issues of comparability (or bias, accuracy) and uncertainty or variability (or precision) of measurements both within and between laboratories (Long & Kalin, 1990). The ¹⁴C community and the wider user communities have supported inter-laboratory comparisons as one of several strands to ensure the quality of measurements (Scott et al, 2018). The nature of the inter-comparisons has evolved as the laboratory characteristics have changed, with a recent emphasis on small, individual samples, such as single tree rings. The next inter-comparison is currently being planned to take place in 2019/20, and to include dendro-dated single and multiple tree rings, annual grain samples and a bulk humic acid sample. The focus of our work in designing intercomparisons is to a) assist laboratories by contributing to their QA/QC processes, b) supplement and enhance our suite of reference materials that are available to laboratories, c) provide consensus ¹⁴C values with associated (small) uncertainties for performance checking and d) provide estimates of laboratory offsets and error multipliers which can inform subsequent modelling and laboratory improvements.

In this paper, the direct and indirect benefits of participation in a laboratory inter-comparison are considered and a few historical examples presented.

Keywords:

1. Introduction

The ¹⁴C community has a long experience of participating in inter-comparisons. Even from the early days of the technique, it was not uncommon for a small number of laboratories to exchange samples (eg Otlet et al, 1980). However, as the community of laboratories grew

then so did the scale of the inter-comparisons, so that in the past 30 years, there have been 5 wide-scale inter-comparisons, covering many different types of samples and many thousands of measurements (Scott et al, 2018). Questions that are often asked are whether the efforts are worthwhile? And what are the benefits and for whom?

One of the early objectives for our work in designing the sequence of inter-comparisons (International Collaborative Study (ICS), Third, Fourth, Fifth and Sixth international radiocarbon inter-comparisons (TIRI, FIRI, VIRI and SIRI respectively)) was to gain a better, empirically-based understanding of the uncertainties associated with a measurement. Could we, by experimental means, quantify the variability observed and thus provide justification for the routinely quoted errors? A well designed inter-comparison is able to quantify both the variability we observe within a laboratory but more importantly the variability amongst laboratories. In this latter context, however, we need to carefully distinguish two forms of variability, one which is systematic and where we would typically use the language of offsets, i.e. systematic differences (usually expressed in terms of the average) between laboratories, and random, which would be the scatter of results from different laboratories (remembering that we would not expect identical results from different laboratories even when measuring identical samples).

However, there are other significant benefits which a laboratory can access from participation in an inter-comparison. Four identified benefits are a) experimentally quantifying uncertainty on measurements, b) benchmarking laboratory performance and while an intercomparison is a snapshot in time, it provides an independent check which supplements routine QC procedures c) access to well characterised materials, typical of the routine dating material and spanning the age range, which form a catalogue of reference materials d) quantifying reproducibility, and comparability (for laboratory and user).

It is also worth reflecting that there are benefits which accrue indirectly to the user. Laboratory participation (and performance) in an inter-comparison may be invisible to a user, (we have always published a list of which laboratories participated but not identified their individual performance) since we have always argued that the laboratory-user relationship is an important one, and recommended users should ask the laboratories they wish to engage with what their QA/QC procedures are and how they perform in these global studies (or indeed in others). Of course, participating in an inter-comparison is a time-limited and specific assessment, but it is indicative of a laboratory that is taking care of its performance. However, to the user, many of the benefits are indirect, and the laboratory efforts may indeed be invisible. Nevertheless, users should be aware of the efforts that laboratories make to deliver QA and QC and it would seem highly appropriate that the laboratory-user relationship should include the exchange of such information.

In this paper, we identify, develop and illustrate the 4 laboratory benefits and consider the future of the programme. The structure of the paper is as follows: section 2 develops each benefit in turn and gives examples of those benefits, section 3 outlines some specific aspects and section 4 reflects on the future.

2. Benefits from participating in an inter-comparison

Many benefits of participation in inter-comparisons are derived from the quality assurance (QA) and quality control (QC) principles and policies adopted by laboratories, which intercomparisons support. The 4 benefits that inter-comparisons provide are directly related to laboratory performance and the uncertainties associated with laboratory measurements. In each of the following sections, we will describe the background to the benefit and how it manifests through the inter-comparison.

First, it is worth considering the steps in the design and implementation of a study. The key steps are to:

- Identify the specific objectives for the study, and design the study accordingly to ensure that key characteristics can be estimated and modelled.
- Identify the samples that are required sample criteria include
 - o sufficient quantity
 - o homogeneous
 - o natural
 - o interesting
 - spanning the ¹⁴C activity range
- Invite laboratories to participate, and set a deadline for results
- Collate and analyse the results, focussing on uncertainty quantification offsets
- Provide feedback to ensure that participation is helpful to the laboratory
- Characterise the materials so that they can be archived and made available as certified reference materials.

2.1 Quantifying uncertainty and variability

Uncertainty, variability and errors are terms that are often used when discussing ¹⁴C dating and inter-comparisons. Uncertainty quantification is the natural place to start the discussion and that begins with the laboratory quoted error, which is calculated based on a number of

considerations, but in essence represents the uncertainty in the measurement. This is quantified based on the variability we observe and is interpreted as the variability we would expect to observe if we were able to repeat the measurement. This also accounts for variability in standards, backgrounds and other laboratory processes. Typically, in many laboratories, this will be based in part on the observed standard deviation from a set of measurements (variation) made on an in-house well characterised material (see Naysmith et al, this volume). In general terms, uncertainty, variability and error also relate to precision (precise results show small variation) and to the concept of repeatability where "repeatability of a measurement is the closeness of agreement between successive measurements carried out under the same conditions e.g., same location, same person, same measurement procedure." Another key property is that of reproducibility which refers to "the closeness of agreement between the results of experiments conducted under changed conditions, including different laboratories and instruments" (Taylor &Kuyatt (2001)).

While these descriptions focus on "the variation in the final ¹⁴C results", we can also consider how to decompose this variation into the contributions from the component stages of providing a ¹⁴C date through designing certain aspects into the inter-comparison or in-house. This is an attribution process that allows a laboratory to complete an accounting of where the variability is coming from and which sources contribute most. For an individual laboratory, the pre-treatment chemistry used, the graphitisation process, the measurement procedure (background and standards used), the stability of the AMS, and indeed the human aspects, all will make a contribution to the overall variability. How can we estimate, and quantify those uncertainties (i.e. attribute and quantify the variability due to these factors)? It is true that a full decomposition of the variation in a set of results is best achieved within the laboratory Scott et al, this volume (a)) using a designed experiment approach, but it is also possible to quantify some components of within and between laboratory variability in an intercomparison, if designed appropriately. In the inter-comparison designs we have developed, this includes replication at different stages in the measurement process (e.g. duplicate samples), a hierarchical approach including both a pre- treated and non-treated material, and repeat of materials over time, providing linking samples to provide the temporal aspects. To achieve these designs, we need large quantities of sample material which must be shown to be homogeneous (see FIRI homogeneity testing (Scott, 2003)). For the user, who may be interested in a compendium of dates e.g. for a specific site, they may be using results from multiple laboratories (focussing thus on reproducibility), so that the individual laboratory is also a potential source of variability.

Within laboratory aspects, included in the inter-comparison design, have included a hierarchical approach (e.g. the 3 stages of ICS and FIRI/VIRI) where we designed a series

of stages looking at bulk pre-treatments, duplicate samples, and different pre-treatment methods where variability may be introduced. Thus, in stage 2 of the ICS, we provided homogenised pre-treated samples (in duplicate) and in stage 3, the raw material, while in FIRI, we again introduced duplicate samples. We have used two streams of humic samples (and wood) that appear in several studies (see Table 1, Scott et al, 2018, Scott et al, this volume(a)).

All of this argues for the need to have a sufficient amount of well homogenised materials as part of the design, to ensure that there is sufficient to provide the laboratories with duplicate samples of raw and pre-treated materials. Materials we have used include a bulk grain sample from a single year of growth, a bulk tree ring sample (single and multiple rings (see Scott et al this volume(b)), including both a cellulose sample but also non pre-treated wood, a bulk humic acid and a raw peat.

2.3. Benchmarking

A second significant benefit is participation in the inter-comparison gives a laboratory an opportunity to benchmark their own operation and while this is a snapshot in time of performance, this should be considered as supplementing internal laboratory QC procedures. Benchmarking allows the laboratory to compare its performance to an external standard, in this case typically the ¹⁴C community. Benchmarking also assists in identifying processes that represent best practices. When results are considered as a whole, then laboratories can identify areas of strength or weakness, and can demonstrate the validity of the results. <u>https://www.nist.gov/blogs/blogrige/how-do-you-harness-power-benchmarking</u>

Our more recent work (Scott et al, 2013, 2018) has provided z-scores as a means of benchmarking. The z-score is calculated relative to the sample consensus value and incorporates random and systematic uncertainties where

z-score= $(x_m-x_A)/\sigma_p$

(1)

where x_m , is the reported result, x_A , is the assigned or true value for the material, and σ_p , is the target value for standard deviation. This latter value is often set a-priori to reflect the precision needed for a specific application field.

And interpretation of the z-scores follows typically as

- |z-score|≤ 2 satisfactory
- 2< |z-score|<3 warning</p>
- |z-score|≥ 3 action

An example of z-scores is given in Fig 1a, showing the z-score for sample D in SIRI and Fig 1b for a specific lab across all samples.

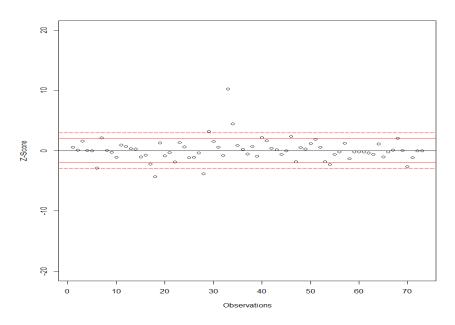


Figure 1a: Z-scores for a single sample (D) in SIRI, with warning and action values identified with solid and dashed lines

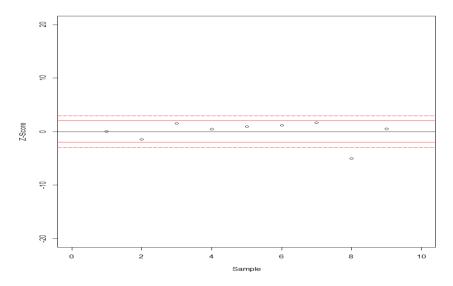


Figure 1b: Z-scores for an individual laboratory with warning and action values identified with solid and dashed lines.

2.4 Reference materials

One key benefit which participation in an inter-comparison brings to laboratories and which also provides wider benefits to the community (and one which is not time limited) is access to well characterised samples that are typical of the routinely dated materials and span the applied ¹⁴C time-scale, and ultimately become what the community recognise as reference materials.

"A reference material is sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process. Uses may include the calibration of a measurement system, assessment of a measurement procedure, assigning values to other materials, and quality control" (NIST 2018). Our consensus values provide both a specified activity/age but also the associated uncertainty. The procedures now used to calculate the consensus values have changed from the early studies since, with the predominance of AMS laboratories, we have introduced a linear mixed model approach (Scott et al, 2017, 2018) which appropriately accommodates shared sources of uncertainty (such as more than one result being reported, or a single AMS facility being used by several laboratories, etc). In SIRI, unlike earlier studies, we have used a *random effects model*, this model allows us to include key information on the multiple measurements reported on the same material by each laboratory, which is increasingly relevant since in SIRI, the vast majority of laboratories were AMS.

.-Historically, we used a robust estimation approach that also takes account of the laboratory quoted error (Rozanski et al, 1992). Examples of some of our current archive of reference materials include: near background bone, background wood, background doublespar, humic acid and barley mash. The values of such reference materials to the community include: (1) to help develop new methods of analysis; (2) to calibrate measurements, institute quality control, and determine performance characteristics. At the end of each study, we have published the consensus values and their uncertainties, and also made known when we have archived material that can be made available.

2.5 To quantify reproducibility, and comparability.

The fourth benefit is similarly related to benchmarking but explores this in a more specific way, e.g. identifying and quantifying pre-treatment effects, different technologies, or sensitivities to effects of background and modern standards. The focus here is on the individual laboratory, but also on the community. In this benefit, we have examined laboratory offsets, identified any significant (statistical) differences that can be attributed to background standards, modern reference standards and pre-treatment effects. Laboratory offsets, relative to the consensus values, are expressed as the average laboratory difference from the consensus profile. Fig 2 shows the distribution of laboratory offsets estimated in SIRI (with a mean of -1.5 years),

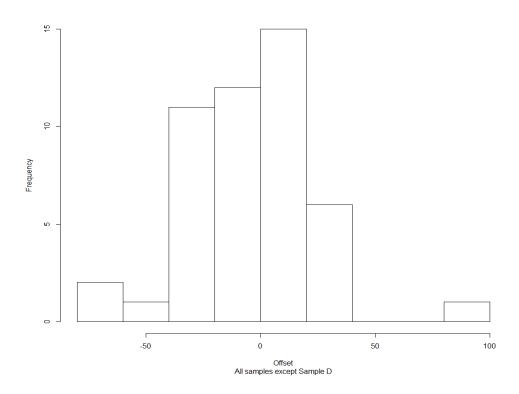
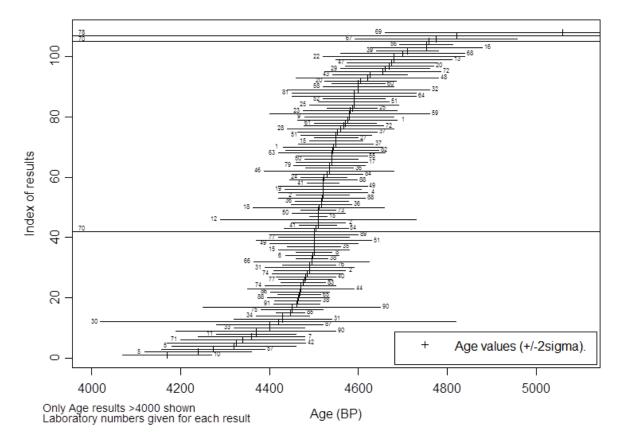



Figure 2: Histogram of the distribution of offsets in yrs (BP) in SIRI

Additionally to check measurement uncertainties (where we have not used duplicates), we have used a zeta score defined as:

• zeta-score=
$$(x_m - x_A)/\sqrt{(\sigma_p^2 + \sigma_a^2)}$$
 (2)

This now incorporates the uncertainty on the reference values σ_a (all other terms are as defined in equation 1). Interpretation of the zeta-scores is similar to z-scores, and from them, it is possible to evaluate a reduced χ^2 (Steele &Douglas, 2006) to quantify any additional variability above that expected given the quoted errors. Visualisation is often also shown in a distribution plot such as that illustrated in Figure 3. The shape in such a plot allows us to identify the underlying distribution as well as the spread (or variability).

Distribution plot of Age +/- 2sigma for dendro wood, D, (all laboratories

Figure 3: Distribution plot of ages (BP) for FIRI Sample D.

3 Specific studies

In some inter-comparisons, we have provided focussed studies including bone (TIRI, VIRI and SIRI) or on background materials (TIRI, FIRI, VIRI and SIRI). These have allowed laboratories to have access to well described samples in sufficient quantity to benchmark their procedures.

3.1 Bone studies

Sub-studies have included emphasis on bone samples: apart from the main intercomparisons, we also organised a small cremated bone inter-comparison (Naysmith et al, 2007) at the same time as we were running Stage 2 of VIRI. Overall, 8 bone samples have been used, with VIRI stage 2 including only bone samples (see Table 1). Not every laboratory routinely measures bone and there are considerable differences in the pretreatment procedures used. There is also interest in the quality of the bone sample, so that we were also able to study the C/N ratio and pretreatment procedure differences.

Study	Sample Code	Sample Type	description
TIRI	L	whalebone	Excavated in Norway in 1992
VIRI	E	mammoth	The mammoth bone sample comes
			from a site called Quartz Creek,
	F		Dawson City, Yukon Territory.
	F	Horse bone	This sample is from an excavation in
			2001 in Siberia at one of the Scythian burial sites.
	G	human bone	This is a bone sample from a young
	Ŭ		female buried with a neonate in a
			waterlogged coffin.
	Н	Whale bone	This whale bone sample was submitted to the University of Washington Quaternary laboratory in August 1983 and the laboratory entry reads: QL-1857
	I	Whale bone	This bone sample is from the cranium of a whale, species not determined. It was found partly buried at the surface of coarse beach material on a marine beach 12 m above present sea level on Svalbard in 1997
		4	
SIRI	B	mammoth	From North Sea
	С	mammoth	LQL4

Table 1: Bone samples used in the inter-comparisons

3.2 Background and near background samples

We have investigated and included a number of both organic and inorganic background and near background samples over the years identified in Table 2. The role that the laboratory background plays in the result and the uncertainty is important (especially in older samples), and this is one area of laboratory practice where there remains considerable divergence in which materials are used and how the background is calculated. We observed instances where the material we provided was better than the in-house background material and also the very clear issues that still exist in how backgrounds are calculated and reported.

Study	Sample Code	Sample Type	description
TIRI	F	Doublespar	Iceland, from the spar mine, provided from the Museum of Natural History, Reykjavik
FIRI	A	Kauri wood	Sub-fossil sample from New

			Zealand
	В	Kauri wood	
VIRI	K	Wood	From Hohenheim (Miocene)
SIRI	А	Wood (VIRI K)	
	С	Mammoth bone	Mammoth bone (Marine Isotope Stage 7; background sample) (Sample LQL4) from Latton Quarry
	K	Doublespar	From Iceland
	L	Wood	From Oregon

Table 2: Background samples used in the intercomparisons

For the background samples, we introduced two approaches to summarise the results; In FIRI and VIRI we used a Kaplan- Meier (KM) approach (Scott, 2003, Dudley et al, 2016) to estimate the age, dealing with censored age reporting, while in SIRI, we introduced the concept of the limit of background (LoB). (Armbruster and Pry, 2008, Scott et al, 2017, 2018). Censored ages mean that the age is reported simply in the form "> BP", and this type of measurement is commonly observed in survival or reliability analysis, where the KM method was first developed, The KM method is a non-parametric method of estimation and the KM survival estimator have been used to estimate the 'mean' age (or activity) of the sample whereas in the LoB, we have adopted a different estimation model reflecting the different reporting protocols used by laboratories..

4. Where next?

The series of inter-comparisons has delivered a greater understanding of the complexities of 14 C dating, provided important benefits to the participating laboratories and communities of users, and created a series of reference materials. However laboratory quality assurance is not something that stops, and as part of that process, a further inter-comparison is being planned. This will be similar to SIRI and will be a single stage study (preliminary name G(lasgow)IRI) of up to 10 materials that will be sourced in sufficient quantity to ensure that there is an archive available to the AMS laboratories to use as reference materials. The age range will span modern to >30K, and will include tree rings, humic acid samples, grain and bone.

5. Conclusions

In conclusion, the driving focus for the inter-comparison programme, now spanning 30 years, has been to provide a process to help laboratories monitor, evidence and improve their quality assurance (and NOT to create a league table or laboratory ranking). This paper has helped enumerate and expand on the multiple benefits of intercomparison participation.

While inter-comparisons are limited in that they provide only snapshots in time, they do allow laboratories to assess their performance, in terms of accuracy and precision, and provide a formal mechanism for benchmarking.

Estimation of between-laboratory variation is essential to the user communities. Having access to well characterised reference materials allows laboratories to adopt the material as an in-house standard to be run routinely, thus contributing to ensuring realistic uncertainty estimates.

Acknowledgements

The extensive programmes of work have been funded from a number of sources including UK research councils (EPSRC and NERC), EU (FP4), NATO, Historic England and Historic Environment Scotland. Colleagues have been immensely generous in their contributions of the materials which are such an important part of the inter-comparison. Finally, a huge thanks to the participating laboratories that have contributed several thousand ¹⁴C age measurements over the years.

References

Armbruster D A and Pry T (2008). Limit of Blank, Limit of Detection and Limit of Quantitation. Clin Biochem Rev, V29(1).

Boaretto E, Bryant C, Carmi I, Cook G, Gulliksen S, Harkness D, Heinemeier J, McGee E, Naysmith P, Possnert G, Scott M, van der Plicht J, van Strydonck M, J Summary findings of the Fourth international Radiocarbon Inter-comparisons (1998-2001) J. Quaternary Science, 2002, 17(7), 633-639.

Bryant C, Carmi I, Cook G, Gulliksen S, Harkness D, Heinemeier J, McGee E, Naysmith P, Possnert G, Scott M, van der Plicht J, van Strydonck M, Sample requirements and design of an inter-laboratory trial for radiocarbon laboratories. NIM (B), 172, 2000, 355.

Cook G T, Harkness D D, Miller B F, Scott E M, Baxter M S, Aitchison T C (1990) International collaborative study: structuring and sample preparation. Radiocarbon, 32(3), 267-270

Dudley,W N, Wickham,R, Coombs,N (2016). An introduction to survival statistics: Kaplan-Meier analysis. J Adv Pract Oncol 2016;7:91–100

Harkness, DD, Cook, GT, Miller, BF, Scott, EM and Baxter, MS (1989). Design and preparation of samples for the international collaborative study. Radiocarbon 31(3): 407-413.

Gulliksen S and Scott E M. 1995. TIRI report, Radiocarbon 37(2), 820-821.

Long A, Kalin R M, 1990. A suggested quality assurance protocol for radiocarbon dating laboratories. Radiocarbon 32(3), 329-334.

Naysmith, P., Scott, E.M., Cook, G.T., Heinemeier, J., van der Plicht, J., van Strydonck, M., Ramsey, C., Grootes, P.M. and Freeman, S.P.H.T. (2007) A cremated bone intercomparison study. Radiocarbon 49, 403-408.

NIST (2018): SRM definiitions. https://www.nist.gov/srm/srm-definitions

Otlet R L, Walker A J, Hewson A D, Burleigh R. 1980. ¹⁴C interlaboratory comparison in the UK: experiment design, preparation and preliminary results. Proceedings of 10th International ¹⁴C conference, Radiocarbon 22(3), 936-947.

Rozanski K, Stichler W, Gonfiantini R, Scott E M, Beukens R P, Kromer B, Van der Plicht J, 1992. The IAEA ¹⁴C intercomparison exercise 1990. *Radiocarbon* 34(3), 506-519.

Scott E M, Aitchison T C, Harkness D D, Cook G T, Baxter M S, 1990. An overview of all three stages of the international radiocarbon intercomparison. *Radiocarbon* 32(3), 309-319. Scott, E.M., Harkness, D.D., Cook, G.T., Aitchison, T.C., Baxter, M.S. (1991) Future quality assurance in 14C dating, Quaternary Proceedings, 1, 1-4.

Scott E M, Harkness D D, Miller B F, Cook G T, Baxter M S, 1992. Announcement of a further international intercomparison exercise. Radiocarbon 34(3), 528-532.

Scott, E.M., Aitchison, T.C., Harkness, D.D., Baxter, M.S., Cook, G.T. (1989) An interim progress report on stages 1 and 2 of the international collaborative program. Radiocarbon, 31, 414-421.

Scott, E.M., Harkness, D.D. and Cook, G.T. (1997) Analytical protocol and quality assurance for 14C analyses: Proposal for a further intercomparison. Radiocarbon, 39, 347-350.

Scott E M, Harkness D D, Cook G T, (1998) Inter-laboratory comparisons; lessons learned. Radiocarbon. 40(1), 331-343.

Scott, E.M., Baxter, M.S., Harkness, D.D., Aitchison, T.C., Cook, G.T. (1990) Radiocarbon: present and future perspectives on quality assurance, Antiquity, 64, 319-322.

Scott, E M (ed), (2003). The third international radiocarbon inter-comparison (TIRI) and the fourth international radiocarbon inter-comparison (FIRI) 1990-2002: results, analyses, and conclusions, *Radiocarbon*, 45, 135-408.

Scott, E.M. Boaretto, E., Bryant, C., Carmi, I., Cook, G.T., Gulliksen, S., Harkness, D.D., Heinemeier, J., McGee, E., Naysmith, P., Possnert, G., Scott, E.M., van der Plicht, J. and van Strydonck, M. (2004) Future needs and requirements for AMS 14C standards and reference materials. Nuclear Instruments and Methods in Physics Research B, 223-224, 382-387.

Scott, E.M., Bryant, C., Carmi, I., Cook, G.T., Gulliksen, S., Harkness, D.D., Heinemeier, J., McGee, E., Naysmith, P., Possnert, G., van der Plicht, J. and van Strydonck, M. (2004)

Precision and accuracy in applied 14C dating: some findings from the Fourth International Radiocarbon Inter-comparison. Journal of Archaeological Science 31, 1209-1213.

Scott, E.M., Cook, G.T., Naysmith, P. and Bryant, C., O'Donnell, D. (2007) A report on phase 1 of the 5th international radiocarbon intercomparison (VIRI). Radiocarbon 49, 409-426.

Scott E M, Cook G T, Naysmith P (2010). A report on phase 2 of the 5th international radiocarbon inter-comparison. Radiocarbon 52 (2) 846-859.

Scott E M, Cook G T, Naysmith P (2010). The 5th international radiocarbon inter-comparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52(2), 859-866.

Scott, E.M., Naysmith, P. and Cook, G.T. (2010) VIRI – summary results and overall assessment. Radiocarbon 52, 859-865.

Scott E M, Cook G T, Naysmith P (2017). Should archaeologists care about 14C intercomparisons? Why? A summary report on SIRI. Radiocarbon 59(5): 1589-1596 Scott E M, Naysmith P , Cook G T (2018). Why do we need ¹⁴C inter-comparisons?: the Glasgow -¹⁴C inter-comparison series, a reflection over 30 years. Quaternary Geochronology.43, 72-82.

Scott E M, Naysmith P, Dunbar E, Cook G T, Dunbar E (this volume(a)). Humics- their history in the radiocarbon inter-comparisons studies

Scott E M, Cook G T, Naysmith P, Staff R (this volume (b)). Learning from the wood samples in ICS, TIRI, FIRI, VIRI and SIRI

Steele A G and Douglas R J (2006) Extending chi-squared statistics for key comparisons in metrology. Journal of Computational and Applied Mathematics 192, 51–58

Taylor B N, Kuyatt C E (2001). *Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results*, [Online]. Available: <u>http://physics.nist.gov/TN1297</u> [2018/8/31]. National Institute of Standards and Technology, Gaithersburg, MD.

Thompson M, Ellison S R, Wood R (2006) The international harmonized protocol for the proficiency testing of analytical chemistry laboratories. Pure Appl. Chem., 78(1), 145–196.