11 research outputs found

    Quaternization of Vinyl/Alkynyl Pyridine Enables Ultrafast Cysteine-Selective Protein Modification and Charge Modulation.

    Get PDF
    Quaternized vinyl- and alkynyl-pyridine reagents were shown to react in an ultrafast and selective manner with several cysteine-tagged proteins at near-stoichiometric quantities. We have demonstrated that this method can effectively create a homogenous antibody-drug conjugate that features a precise drug-to-antibody ratio of 2, which was stable in human plasma and retained its specificity towards Her2+ cells. Finally, the developed warhead introduces a +1 charge to the overall net charge of the protein, which enabled us to show that the electrophoretic mobility of the protein may be tuned through the simple attachment of a quaternized vinyl pyridinium reagent at the cysteine residues. We anticipate the generalized use of quaternized vinyl- and alkynyl-pyridine reagents not only for bioconjugation, but also as warheads for covalent inhibition and as tools to profile cysteine reactivity

    Fluorescent amino acids as versatile building blocks for chemical biology

    Get PDF
    Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein–protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging. [Figure not available: see fulltext.]

    Tetrazine-Triggered Release of Carboxylic-Acid-Containing Molecules for Activation of an Anti-inflammatory Drug.

    No full text
    In addition to its use for the study of biomolecules in living systems, bioorthogonal chemistry has emerged as a promising strategy to enable protein or drug activation in a spatially and temporally controlled manner. This study demonstrates the application of a bioorthogonal inverse electron-demand Diels-Alder (iEDDA) reaction to cleave trans-cyclooctene (TCO) and vinyl protecting groups from carboxylic acid-containing molecules. The tetrazine-mediated decaging reaction proceeded under biocompatible conditions with fast reaction kinetics (<2 min). The anti-inflammatory activity of ketoprofen was successfully reinstated after decaging of the nontoxic TCOprodrug in live macrophages. Overall, this work expands the scope of functional groups and the application of decaging reactions to a new class of drugs

    Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions.

    No full text
    Strained alkenes and alkynes are the predominant dienophiles used in inverse electron demand Diels-Alder (IEDDA) reactions. However, their instability, cross-reactivity, and accessibility are problematic. Unstrained dienophiles, although physiologically stable and synthetically accessible, react with tetrazines significantly slower relative to strained variants. Here we report the development of potassium arylethynyltrifluoroborates as unstrained dienophiles for fast, chemically triggered IEDDA reactions. By varying the substituents on the tetrazine (e.g., pyridyl- to benzyl-substituents), cycloaddition kinetics can vary from fast (k2 = 21 M-1 s-1) to no reaction with an alkyne-BF3 dienophile. The reported system was applied to protein labeling both in the test tube and fixed cells and even enabled mutually orthogonal labeling of two distinct proteins

    Precise installation of diazo-tagged side-chains on proteins to enable in vitro and in-cell site-specific labelling

    No full text
    The chemistry of diazocompounds has generated a huge breadth of applications in the field of organic synthesis. Their versatility combined with their tuneable reactivity, stability and chemoselectivity makes diazo compounds desirable reagents for chemical biologists. Here, we describe a method for the precise installation of diazo-handles on proteins and antibodies in a mild and specific approach. Subsequent 1,3- cycloaddition reactions with strained alkynes enable both bioimaging through an in-cell ‘click’ reaction and probing of the cysteine proteome in cell lysates. The selectivity and efficiency of these processes makes these suitable reagents for chemical biology studies

    Azabicyclic vinyl sulfones for residue-specific dual protein labelling.

    No full text
    We have developed [2.2.1]azabicyclic vinyl sulfone reagents that simultaneously enable cysteine-selective protein modification and introduce a handle for further bioorthogonal ligation. The reaction is fast and selective for cysteine relative to other amino acids that have nucleophilic side-chains, and the formed products are stable in human plasma and are moderately resistant to retro Diels-Alder degradation reactions. A model biotinylated [2.2.1]azabicyclic vinyl sulfone reagent was shown to efficiently label two cysteine-tagged proteins, ubiquitin and C2Am, under mild conditions (1-5 equiv. of reagent in NaPi pH 7.0, room temperature, 30 min). The resulting thioether-linked conjugates were stable and retained the native activity of the proteins. Finally, the dienophile present in the azabicyclic moiety on a functionalised C2Am protein could be fluorescently labelled through an inverse electron demand Diels-Alder reaction in cells to allow selective apoptosis imaging. The combined advantages of directness, site-specificity and easy preparation mean [2.2.1]azabicyclic vinyl sulfones can be used for residue-specific dual protein labelling/construction strategies with minimal perturbation of native function based simply on the attachment of an [2.2.1]azabicyclic moiety to cysteine

    Stable Pyrrole-Linked Bioconjugates through Tetrazine-Triggered Azanorbornadiene Fragmentation.

    Get PDF
    An azanorbornadiene bromovinyl sulfone reagent for cysteine-selective bioconjugation has been developed. Subsequent reaction with dipyridyl tetrazine leads to bond cleavage and formation of a pyrrole-linked conjugate. The latter involves ligation of the tetrazine to the azanorbornadiene-tagged protein through inverse electron demand Diels-Alder cycloaddition with subsequent double retro-Diels-Alder reactions to form a stable pyrrole linkage. The sequence of site-selective bioconjugation followed by bioorthogonal bond cleavage was efficiently employed for the labelling of three different proteins. This method benefits from easy preparation of these reagents, selectivity for cysteine, and stability after reaction with a commercial tetrazine, which has potential for the routine preparation of protein conjugates for chemical biology studies

    Synthesis, conformational analysis and: In vivo assays of an anti-cancer vaccine that features an unnatural antigen based on an sp<sup>2</sup>-iminosugar fragment

    No full text
    Thr/Ser) is a well-known tumor-associated carbohydrate determinant. The use of glycopeptides that incorporate this structure has become a significant and promising niche of research owing to their potential use as anticancer vaccines. Herein, the conformational preferences of a glycopeptide with an unnatural Tn antigen, characterized by a threonine decorated with an sp2-iminosugar-type α-GalNAc mimic, have been studied both in solution, by combining NMR spectroscopy and molecular dynamics simulations, and in the solid state bound to an anti-mucin-1 (MUC1) antibody, by X-ray crystallography. The Tn surrogate can mimic the main conformer sampled by the natural antigen in solution and exhibits high affinity towards anti-MUC1 antibodies. Encouraged by these data, a cancer vaccine candidate based on this unnatural glycopeptide and conjugated to the carrier protein Keyhole Limpet Hemocyanin (KLH) has been prepared and tested in mice. Significantly, the experiments in vivo have proved that this vaccine elicits higher levels of specific anti-MUC1 IgG antibodies than the analog that bears the natural Tn antigen and that the elicited antibodies recognize human breast cancer cells with high selectivity. Altogether, we compile evidence to confirm that the presentation of the antigen, both in solution and in the bound state, plays a critical role in the efficacy of the designed cancer vaccines. Moreover, the outcomes derived from this vaccine prove that there is room for exploring further adjustments at the carbohydrate level that could contribute to designing more efficient cancer vaccines
    corecore