113 research outputs found

    Many shades of gray - The context-dependent performance of organic agriculture

    Get PDF
    Organic agriculture is often proposed as a more sustainable alternative to current conventional agriculture. We assess the current understanding of the costs and benefits of organic agriculture across multiple production, environmental, producer, and consumer dimensions.Organic agriculture shows many potential benefits (including higher biodiversity and improved soil and water quality per unit area, enhanced profitability, and higher nutritional value) as well as many potential costs including lower yields and higher consumer prices. However, numerous important dimensions have high uncertainty, particularly the environmental performance when controlling for lower organic yields, but also yield stability, soil erosion, water use, and labor conditions.We identify conditions that influence the relative performance of organic systems, highlighting areas for increased research and policy support

    Global crop yield response to extreme heat stress under multiple climate change futures

    Get PDF
    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries

    Towards An Integrated Land Use Data Base for Assessing the Potential for Greenhouse Gas Mitigation

    Get PDF
    This paper describes the GTAP Land Use Data Base designed to support integrated assessments of the potential for greenhouse gas mitigation. It disaggregates land use by agro-ecological zone (AEZ). To do so, it draws upon global land cover data bases, as well as state-of-the-art definition of AEZs from the FAO and IIASA. Agro-ecological zoning segments a parcel of land into smaller units according to agro-ecological characteristics, including: precipitation, temperature, soil type, terrain conditions, etc. Each zone has a similar combination of constraints and potential for land use. In the GTAP-AEZ Data Base, there are 18 AEZs, covering six different lengths of growing period spread over three different climatic zones. Land using activities include crop production, livestock raising, and forestry. In so doing, this extension of the standard GTAP Data Base permits a much more refined characterization of the potential for shifting land use amongst these different activities. When combined with information on greenhouse gas emissions, this data base permits economists interested in integrated assessment of climate change to better assess the role of land use change in greenhouse gases mitigation strategies

    Evaluating Alternative Options for Managing Nitrogen Losses from Corn Production

    Get PDF
    This brief focuses specifically on agriculture in the Midwest where excess nitrogen presents a significant challenge for water quality – both locally and in the Gulf of Mexico. While the Gulf Hypoxia Task Force has called for a 45% reduction in watershed nitrate loading across the Corn Belt, our business as usual mid-century projections show this rate rising, rather than falling. Therefore, this brief explores policies aimed at reducing nitrogen losses from farms in the region. These include (among others) adoption of best management practices, drainage management, wetland restoration, cap and trade policies and modification to the biofuel mandates. We find that no single policy is capable of achieving the stated environmental goals, but, when implemented in concert, they could indeed be effective at reducing nitrate leaching rates across the Corn Belt. However, once again, there are tradeoffs associated with achieving this environmental objective and these are explored in this Policy Brief

    Shifts in the abiotic and biotic environment of cultivated sunflower under future climate change☆

    Get PDF
    Sunflower is a unique model species for assessing crop responses and adaptation to climate change. We provide an initial assessment of how climate change may influence the abiotic and biotic environment of cultivated sunflower across the world. We find an 8% shift between current and future climate space in cultivated sunflower locations globally, and a 48% shift in Northern America, where the crop originates. Globally, the current niche occupied by sunflower crop wild relatives offer few opportunities to adapt to future climate for cultivated sunflower, but in Northern America 100% of the future climate space of cultivated sunflower is filled by the niche of primary wild relative germplasm alone (e.g. wild Helianthus annuus). Globally, we find little difference in the overlap between current and future climate space of cultivated sunflower with the niche of the important sunflower pathogen Sclerotinia sclerotiorum, but in Northern America, climate change will decrease the overlap between local populations of this pest and cultivated sunflower by 38%. Our analysis highlights the utility of multi-scale analysis for identifying candidate taxa for breeding efforts and for understanding how future climate will shift the abiotic and biotic environment of cultivated crops

    Ten facts about land systems for sustainability

    Get PDF
    Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use

    Marked isotopic variability within and between the Amazon River and marine dissolved black carbon pools

    Get PDF
    Riverine dissolved organic carbon (DOC) contains charcoal byproducts, termed black carbon (BC). To determine the significance of BC as a sink of atmospheric CO2 and reconcile budgets, the sources and fate of this large, slow-cycling and elusive carbon pool must be constrained. The Amazon River is a significant part of global BC cycling because it exports an order of magnitude more DOC, and thus dissolved BC (DBC), than any other river. We report spatially resolved DBC quantity and radiocarbon (Δ14C) measurements, paired with molecular-level characterization of dissolved organic matter from the Amazon River and tributaries during low discharge. The proportion of BC-like polycyclic aromatic structures decreases downstream, but marked spatial variability in abundance and Δ14C values of DBC molecular markers imply dynamic sources and cycling in a manner that is incongruent with bulk DOC. We estimate a flux from the Amazon River of 1.9–2.7 Tg DBC yr−1 that is composed of predominately young DBC, suggesting that loss processes of modern DBC are important

    Quantifying Earth system interactions for sustainable food production via expert elicitation

    Get PDF
    Several safe boundaries of critical Earth system processes have already been crossed due to human perturbations; not accounting for their interactions may further narrow the safe operating space for humanity. Using expert knowledge elicitation, we explored interactions among seven variables representing Earth system processes relevant to food production, identifying many interactions little explored in Earth system literature. We found that green water and land system change affect other Earth system processes strongly, while land, freshwater and ocean components of biosphere integrity are the most impacted by other Earth system processes, most notably blue water and biogeochemical flows. We also mapped a complex network of mechanisms mediating these interactions and created a future research prioritization scheme based on interaction strengths and existing knowledge gaps. Our study improves the understanding of Earth system interactions, with sustainability implications including improved Earth system modelling and more explicit biophysical limits for future food production
    • 

    corecore