456 research outputs found

    Shot noise suppression in multimode ballistic Fermi conductors

    Full text link
    We have derived a general formula describing current noise in multimode ballistic channels connecting source and drain electrodes with Fermi electron gas. In particular (at eVkBTeV\gg k_{B}T), the expression describes the nonequilibrium ''shot'' noise, which may be suppressed by both Fermi correlations and space charge screening. The general formula has been applied to an approximate model of a 2D nanoscale, ballistic MOSFET. At large negative gate voltages, when the density of electrons in the channel is small, shot noise spectral density SI(0)S_{I}(0) approaches the Schottky value 2eI2eI, where II is the average current. However, at positive gate voltages, when the maximum potential energy in the channel is below the Fermi level of the electron source, the noise can be at least an order of magnitude smaller than the Schottky value, mostly due to Fermi effects.Comment: 4 page

    Effect of screening on shot noise in diffusive mesoscopic conductors

    Full text link
    Shot noise in diffusive mesoscopic conductors, at finite observation frequencies ω\omega (comparable to the reciprocal Thouless time τT1\tau_T^{-1}), is analyzed with an account of screening. At low frequencies, the well-known result SI(ω)=2eI/3S_I(\omega)=2eI/3 is recovered. This result is valid at arbitrary ωτT\omega \tau_T for wide conductors longer than the screening length. However, at least for two very different systems, namely, wide and short conductors, and thin conductors over a close ground plane, noise approaches a different fundamental level, SI(ω)=eIS_I(\omega) = eI, at ωτT1\omega \tau _T\gg 1.Comment: 5 pages, 3 figures. Published version. Also available in the journal's format at http://hana.physics.sunysb.edu/~yehuda/cv/papers/shotnoise.pd

    Microscopic analysis of shot-noise suppression in nondegenerate diffusive conductors

    Get PDF
    We present a theoretical investigation of shot-noise suppression due to long-range Coulomb interaction in nondegenerate diffusive conductors. Calculations make use of an ensemble Monte Carlo simulator self-consistently coupled with a one-dimensional Poisson solver. We analyze the noise in a lightly doped active region surrounded by two contacts acting as thermal reservoirs. By taking the doping of the injecting contacts and the applied voltage as variable parameters, the influence of elastic and inelastic scattering in the active region is investigated. The transition from ballistic to diffusive transport regimes under different contact injecting statistics is analyzed and discussed. Provided significant space-charge effects take place inside the active region, long-range Coulomb interaction is found to play an essential role in suppressing the shot noise at qUkBTqU \gg k_BT. In the elastic diffusive regime, momentum space dimensionality is found to modify the suppression factor γ\gamma, which within numerical uncertainty takes values respectively of about 1/3, 1/2 and 0.7 in the 3D, 2D and 1D cases. In the inelastic diffusive regime, shot noise is suppressed to the thermal value.Comment: 11 pages, 13 figure

    Shot-noise anomalies in nondegenerate elastic diffusive conductors

    Full text link
    We present a theoretical investigation of shot-noise properties in nondegenerate elastic diffusive conductors. Both Monte Carlo simulations and analytical approaches are used. Two new phenomena are found: (i) the display of enhanced shot noise for given energy dependences of the scattering time, and (ii) the recovery of full shot noise for asymptotic high applied bias. The first phenomenon is associated with the onset of negative differential conductivity in energy space that drives the system towards a dynamical electrical instability in excellent agreement with analytical predictions. The enhancement is found to be strongly amplified when the dimensionality in momentum space is lowered from 3 to 2 dimensions. The second phenomenon is due to the suppression of the effects of long range Coulomb correlations that takes place when the transit time becomes the shortest time scale in the system, and is common to both elastic and inelastic nondegenerate diffusive conductors. These phenomena shed new light in the understanding of the anomalous behavior of shot noise in mesoscopic conductors, which is a signature of correlations among different current pulses.Comment: 9 pages, 6 figures. Final version to appear in Phys. Rev.

    Nonlinear voltage dependence of the shot noise in mesoscopic degenerate conductors with strong electron-electron scattering

    Get PDF
    It is shown that measurements of zero-frequency shot-noise can provide information on electron-electron interaction, because the strong interaction results in the nonlinear voltage dependence of the shot noise in metallic wires. This is due to the fact that the Wiedemann-Franz law is no longer valid in the case of considerable electron-electron interaction. The deviations from this law increase the noise power and make it dependent strongly on the ratio of electron-electron and electron-impurity scattering rates.Comment: 4 pages, 2 figures, revised version according to referee's comment

    Coulomb screening in mesoscopic noise: a kinetic approach

    Full text link
    Coulomb screening, together with degeneracy, is characteristic of the metallic electron gas. While there is little trace of its effects in transport and noise in the bulk, at mesoscopic scales the electronic fluctuations start to show appreciable Coulomb correlations. Within a strictly standard Boltzmann and Fermi-liquid framework, we analyze these phenomena and their relation to the mesoscopic fluctuation-dissipation theorem, which we prove. We identify two distinct screening mechanisms for mesoscopic fluctuations. One is the self-consistent response of the contact potential in a non-uniform system. The other couples to scattering, and is an exclusively non-equilibrium process. Contact-potential effects renormalize all thermal fluctuations, at all scales. Collisional effects are relatively short-ranged and modify non-equilibrium noise. We discuss ways to detect these differences experimentally.Comment: Source: REVTEX. 16 pp.; 7 Postscript figs. Accepted for publication in J. Phys.: Cond. Ma

    Dynamical effects of an unconventional current-phase relation in YBCO dc-SQUIDs

    Full text link
    The predominant d-wave pairing symmetry in high temperature superconductors allows for a variety of current-phase relations in Josephson junctions, which is to a certain degree fabrication controlled. In this letter we report on direct experimental observations of the effects of a non-sinusoidal current-phase dependence in YBCO dc-SQUIDs, which agree with the theoretical description of the system.Comment: 4 pages, 4 ps figures, to apprear in Phys. Rev. Let

    Universal distribution of transparencies in highly conductive Nb/AlOx_x/Nb junctions

    Full text link
    We report the observation of the universal distribution of transparencies, predicted by Schep and Bauer [Phys. Rev. Lett. {\bf 78}, 3015 (1997)] for dirty sharp interfaces, in uniform Nb/AlOx_x/Nb junctions with high specific conductance (10810^8 Ohm1^{-1}cm2^{-2}). Experiments used the BCS density of states in superconducting niobium for transparency distribution probing. Experimental results for both the dc IVI-V curves at magnetic-field-suppressed supercurrent and the Josephson critical current in zero magnetic field coincide remarkably well with calculations based on the multimode theory of multiple Andreev reflections and the Schep-Bauer distribution.Comment: 4 pages, 4 figures, references adde

    Charge Fluctuations in Quantum Point Contacts and Chaotic Cavities in the Presence of Transport

    Full text link
    We analyze the frequency-dependent current fluctuations induced into a gate near a quantum point contact or a quantum chaotic cavity. We use a current and charge conserving, effective scattering approach in which interactions are treated in random phase approximation. The current fluctuations measured at a nearby gate, coupled capacitively to the conductor, are determined by the screened charge fluctuations of the conductor. Both the equilibrium and the non-equilibrium current noise at the gate can be expressed with the help of resistances which are related to the charge dynamics on the conductor. We evaluate these resistances for a point contact and determine their distributions for an ensemble of chaotic cavities. For a quantum point contact these resistances exhibit pronounced oscillations with the opening of new channels. For a chaotic cavity coupled to one channel point contacts the charge relaxation resistance shows a broad distribution between 1/4 and 1/2 of a resistance quantum. The non-equilibrium resistance exhibits a broad distribution between zero and 1/4 of a resistance quantum.Comment: 9 pages, two-column Revtex, 6 figures include

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde
    corecore