43 research outputs found
Stiffness and energy losses in cylindrically symmetric superconductor levitating systems
Stiffness and hysteretic energy losses are calculated for a magnetically
levitating system composed of a type-II superconductor and a permanent magnet
when a small vibration is produced in the system. We consider a cylindrically
symmetric configuration with only vertical movements and calculate the current
profiles under the assumption of the critical state model. The calculations,
based on magnetic energy minimization, take into account the demagnetization
fields inside the superconductor and the actual shape of the applied field. The
dependence of stiffness and hysteretic energy losses upon the different
important parameters of the system such as the superconductor aspect ratio, the
relative size of the superconductor-permanent magnet, and the critical current
of the superconductor are all systematically studied. Finally, in view of the
results, we provide some trends on how a system such as the one studied here
could be designed in order to optimize both the stiffness and the hysteretic
losses.Comment: 8 pages; 8 figure
Superconducting Vortex Lattices for Ultracold Atoms
We propose and analyze a nanoengineered vortex array in a thin-film type-II
superconductor as a magnetic lattice for ultracold atoms. This proposal
addresses several of the key questions in the development of atomic quantum
simulators. By trapping atoms close to the surface, tools of nanofabrication
and structuring of lattices on the scale of few tens of nanometers become
available with a corresponding benefit in energy scales and temperature
requirements. This can be combined with the possibility of magnetic single site
addressing and manipulation together with a favorable scaling of
superconducting surface-induced decoherence.Comment: Published Version. Manuscript: 5 pages, 3 figures. Supplementary
Information: 11 pages, 7 figure
Long-distance transfer and routing of static magnetic fields
We show how the static magnetic field of a finite source can be transferred and routed to arbitrary long distances. This is achieved by using transformation optics, which results in a device made of a material with a highly anisotropic magnetic permeability. We show that a simplified version of the device, made by a superconducting-ferromagnet hybrid, also leads to an excellent transfer of the magnetic field. The latter is demonstrated with a proof-of-principle experiment where a ferromagnet tube coated with a superconductor improves the transfer of static magnetic fields with respect to conventional methods by a 400% factor over distances of 14 cm
Meissner state in finite superconducting cylinders with uniform applied magnetic field
We study the magnetic response of superconductors in the presence of low
values of a uniform applied magnetic field. We report measurements of DC
magnetization and AC magnetic susceptibility performed on niobium cylinders of
different length-to-radius ratios, which show a dramatic enhance of the initial
magnetization for thin samples, due to the demagnetizing effects. The
experimental results are analyzed by applying a model that calculates the
magnetic response of the superconductor, taking into account the effects of the
demagnetizing fields. We use the results of magnetization and current and field
distributions of perfectly diamagnetic cylinders to discuss the physics of the
demagnetizing effects in the Meissner state of type-II superconductors.Comment: Accepted to be published in Phys. Rev. B; 15 pages, 7 ps figure
Experimental and theoretical study of demagnetization fields in superconducting samples of orthorhombic shape
In this work we present a model for the calculation of the magnetic properties of superconductors of orthorhombic shape in the perfect shielding state when an external uniform magnetic field is applied in the direction of one of the principal axes of the sample. Our model accounts for demagnetization effects and it is free of fitting parameters and boundary value conditions. We consider planar linear circuits that lie perpendicular to the direction of the applied field. Calculation of the value of the currents is based on magnetic energy minimization. The model is proved to be accurate enough to reproduce experimental results as long as the dimension along the applied field is not much lower than the other dimensions. Calculations of surface currents, as well as measurements and calculations of magnetization and initial susceptibility, are reported. We also present an empirical formula that provides a good fit to the initial susceptibility of a general sample of orthorhombic shape. Demagnetization effects observed on the experimental results are explained in terms of the induced currents in the superconductor. (C) 2004 American Institute of Physics.96148649
Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field
The case of a hard type II superconductor in the form of strip with elliptic
cross-section when placed in transverse magnetic field is studied. We approach
the problem in two steps, both based on the critical-state model. First we
calculate numerically the penetrated current profiles that ensure complete
shielding in the interior, without assuming an a priori form for the profiles.
In the second step we introduce an analytical approximation that asumes that
the current profiles are ellipses. Expressions linking the sample magnetization
to the applied field are derived covering the whole range of applied fields.
The theoretical predictions are tested by the comparison with experimental data
for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure
Negative permeability in magnetostatics and its experimental demonstration
The control of magnetic fields, essential for our science and technology, is currently achieved by magnetic materials with positive permeability, including ferromagnetic, paramagnetic, and diamagnetic types. Here we introduce materials with negative static permeability as a new paradigm for manipulating magnetic fields. As a first step, we extend the solutions of Maxwell magnetostatic equations to include negative-permeability values. The understanding of these new solutions allow us to devise a negative-permeability material as a suitably tailored set of currents arranged in space, overcoming the fact that passive materials with negative permeability do no exist in magnetostatics. We confirm the theory by experimentally creating a spherical shell that emulates a negative-permeability material in a uniform magnetic field. Our results open new possibilities for creating and manipulating magnetic fields, which can be useful for practical applications
A magnetic wormhole
Wormholes are fascinating cosmological objects that can connect two distant regions of the universe. Because of their intriguing nature, constructing a wormhole in a lab seems a formidable task. A theoretical proposal by Greenleaf et al. presented a strategy to build a wormhole for electromagnetic waves. Based on metamaterials, it could allow electromagnetic wave propagation between two points in space through an invisible tunnel. However, an actual realization has not been possible until now. Here we construct and experimentally demonstrate a magnetostatic wormhole. Using magnetic metamaterials and metasurfaces, our wormhole transfers the magnetic field from one point in space to another through a path that is magnetically undetectable. We experimentally show that the magnetic field from a source at one end of the wormhole appears at the other end as an isolated magnetic monopolar field, creating the illusion of a magnetic field propagating through a tunnel outside the 3D space. Practical applications of the results can be envisaged, including medical techniques based on magnetism
Piecewise Rational Manifold Surfaces with Sharp Features
We present a construction of a piecewise rational free-form surface of arbitrary topological genus which may contain sharp features: creases, corners or cusps. The surface is automatically generated from a given closed triangular mesh. Some of the edges are tagged as sharp ones, defining the features on the surface. The surface is C s smooth, for an arbitrary value of s, except for the sharp features defined by the user. Our method is based on the manifold construction and follows the blending approach
Enhancing the sensitivity of magnetic sensors by 3D metamaterial shells
Magnetic sensors are key elements in our interconnected smart society. Their sensitivity becomes essential for many applications in fields such as biomedicine, computer memories, geophysics, or space exploration. Here we present a universal way of increasing the sensitivity of magnetic sensors by surrounding them with a spherical metamaterial shell with specially designed anisotropic magnetic properties. We analytically demonstrate that the magnetic field in the sensing area is enhanced by our metamaterial shell by a known factor that depends on the shell radii ratio. When the applied field is non-uniform, as for dipolar magnetic field sources, field gradient is increased as well. A proof-of-concept experimental realization confirms the theoretical predictions. The metamaterial shell is also shown to concentrate time-dependent magnetic fields upto frequencies of 100 kHz