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In this work we present a model for the calculation of the magnetic properties of superconductors
of orthorhombic shape in the perfect shielding state when an external uniform magnetic field is
applied in the direction of one of the principal axes of the sample. Our model accounts for
demagnetization effects and it is free of fitting parameters and boundary value conditions. We
consider planar linear circuits that lie perpendicular to the direction of the applied field. Calculation
of the value of the currents is based on magnetic energy minimization. The model is proved to be
accurate enough to reproduce experimental results as long as the dimension along the applied field
is not much lower than the other dimensions. Calculations of surface currents, as well as
measurements and calculations of magnetization and initial susceptibility, are reported. We also
present an empirical formula that provides a good fit to the initial susceptibility of a general sample
of orthorhombic shape. Demagnetization effects observed on the experimental results are explained
in terms of the induced currents in the superconductor. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1736325#

I. INTRODUCTION

When a superconducting or magnetic sample is in the
presence of an applied magnetic field, it becomes magne-
tized. Therefore, magnetic poles appear over some regions of
the material, and produce a magnetic field that depends on
the geometry of the sample. Thus, measurements of the mag-
netic properties could be strongly dependent on the shape of
the sample under study.

When a magnetic field is applied to the sample, the total
field can be considered the sum of the applied field,Ha , and
the field created by the currents inducedHJ :

H5Ha1HJ . ~1!

The induced currents result in magnetization of the super-
conductor,M , and in the demagnetization fieldHd .

Besides some simple ideal cases where one or more di-
mensions are infinite, only in ellipsoidal-shaped samples
with uniform applied field are the demagnetization field and
the magnetization uniform. In this particular situation, geo-

metric demagnetizing effects can be summarized by a scalar
factor,N, which depends on the dimensions of the ellipsoid.1

For other finite geometries, the study of demagnetizing
fields is a complicated task, mainly because the demagnetiz-
ing field is nonuniform inside the sample. In this case, the
Maxwell equations should be solved numerically. In the case
of finite cylinders with applied field along the principal axis,
an important contribution was made by Chenet al.2 These
authors described a numerical procedure to obtain both flux-
metric and magnetometric demagnetizing factors for differ-
ent magnetic susceptibility of the cylinders. In the case of
prisms, results for demagnetization factors are reported for
zero susceptibility3,4 and infinite susceptibility in the case of
square bars.5 Recently, a study was reported for an infinite
bar with a square cross section, and it included analytical
expressions for extreme values of susceptibility6 and numeri-
cal expressions for intermediate values.7 All of that work
included results for current distribution and magnetization
and demagnetization factors~both fluxmetric and magneto-
metric!.

Superconductors can be considered a particular case of
magnetic materials. Below the lower critical magnetic field
both type-I and type-II superconductors behave as perfecta!Corresponding author; electronic mail: faraujo@df.ufscar.br
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diamagnets, excluding the external magnetic field from its
interior. Thus,H50 inside such a superconductor, except
over the magnetic penetration depth. In this situation, the
total magnetic field inside the superconducting sample can
be considered a result of the superposition of the external
magnetic field and the field created by the induced superficial
currents. Those currents are responsible for magnetization of
the sample and for the existence of the demagnetizing field.
Therefore, calculation of induced superficial currents will al-
low determination of the effect of the geometry of the sample
in measured magnetic properties.

The Meissner state of a sample can also be viewed as the
limiting case of high critical current of a type-II supercon-
ductor. In the more general case of a type-II superconductor,
the current distribution that shields a thin superconductor of
arbitrary shape~with the field applied perpendicular to its
plane! was numerically solved by Prigozhinet al.8 using the
critical state model.9 Penetration of current in finite type-II
superconducting cylinders has also been studied.10–13 In a
similar way, complete shielding is also a particular case~in-
ternal susceptibility equal to21! in the general treatment of
cylinders done in Ref. 2. Moreover, the case of a supercon-
ducting cylinder in the Meissner state, focusing especially on
demagnetizing problems, has been shown in Ref. 14 from
both the theoretical and the experimental point of view. In
Refs. 15 and 16 shielding of a finite type-II cylindrical su-
perconductor was studied in the case of a nonuniform~cylin-
drical symmetry! applied field. Of particular interest for the
present work is the model described in Ref. 14 to calculate
shielding currents: for finite cylinders, the model assumes a
system of circular linear currents flowing through the surface
of the superconductor. Minimization of the magnetic energy
is, then, used to establish the value of the induced current at
each circuit in order to completely shield the total magnetic
field from inside the superconductor. It is important to note
that the directions of induced currents have to be imple-
menteda priori. In the case of cylinders, those directions are
completely determined by the symmetry of the system.

In the case of samples of orthorhombic shape, symmetry
arguments are not enough to completely determine the direc-
tion of induced currents. In particular, squared currents were
considered in Ref. 17 to consider the fully penetrated critical
state. In Ref. 18 squared currents that flow over the surface
were considered in order to explain susceptibility measure-
ments of niobium orthorhombically shaped samples with a
square base in a completely shielded state. However, no sys-
tematic study of demagnetization effects was done.

In this article we apply the procedure of minimization of
energy to simulate the Meissner state in a general three-
dimensional sample of orthorhombic shape. In this case, the
applied magnetic field was chosen to be along one of its
principal axes. Rectangular induced currents were considered
to flow on the surfaces of the superconductor. These currents
represent an approximation of real currents which com-
pletely shield the applied magnetic field. The model pre-
sented here is not exact since the rectangular circuits do not
completely shield the applied magnetic field. However, our
model could be very useful for experimentalists, since it al-
lows one to obtain accurate enough information about shield-

ing of the superconducting sample. Besides, this model can
be adapted to geometries other than the orthorhombic one,
and it can be easily implemented in a personal computer.

This article is structured as follows. In Sec. II we review
the calculation procedure and the conditions that the model
should obey in order to be applicable. In Sec. III we show
experimental and numerical results for magnetization and
susceptibility as well as the calculated current distribution. In
Sec. IV we discuss earlier results and the applicability of our
model. Finally, conclusions are presented in Sec. V.

II. THEORETICAL MODEL

We consider a perfectly shielded superconducting
sample of orthorhombic shape of dimensionsa, b, andc. We
consider also a uniformly applied magnetic fieldHa5Hak,
oriented along thez axis, which is the direction of thec
dimension of the superconducting sample. We assumel50,
wherel is the penetration depth of the magnetic field in the
superconductor. We use rectangular coordinates that origi-
nate at the geometrical center of the superconducting sample
~see Fig. 1!.

Our aim is to calculate currents induced on the surface of
the superconductor that shield the applied magnetic field.
Using arguments of symmetry we can deduce some of the
properties about the direction of the flowing induced cur-
rents. In the present case, currents must be symmetric with
respect to the center layer of the superconductor~plane z
50). They must also be antisymmetric~because of the sign!
with respect to thez axis. That is,

K ~x,y,2z!5K ~x,y,z!,
~2!K ~2x,2y,z!52K ~x,y,z!.

In these equationsK (x,y,z) is the surface current den-
sity at the point (x,y,z) belonging to the surface of the su-
perconductor. It is clear that the current density induced
K (x,y,0) must close itself in a rectangular circuit lying on
the z50 plane and follow the rectangular shape of the sur-
face of the superconductor.

FIG. 1. Sketch of the geometry of the superconducting sample and assumed
induced current circuits. The direction of the applied magnetic field is also
shown.
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To accomplish these symmetry arguments we can con-
sider rectangular currents flowing in planes perpendicular to
the applied magnetic field. This choice is not the only option
in order to accomplish symmetry conditions@Eqs. ~2!#. In
fact, for the case ofc!a the model is expected to fail since
the induced currents are known to be nonrectangular in the
center region of the surfaces,z56c/2.8,11

For simplicity, instead of considering surface currents,
we substitute them by a set of linear currents that flow
through the surface of the superconductor~Fig. 1!. Once the
direction of the induced currents is set in advance, we calcu-
late their values by the energy minimization method pre-
sented in Ref. 14. The method of calculation consists of in-
creasing step by step the value of the current in some of the
circuits considered after turning on applied magnetic field
Ha . The circuit chosen would be the one where the incre-
ment of the absolute value of its current will give maximum
energy minimization of the whole system. This method is
equivalent to considering a set ofN rectangular circuits dis-
tributed over the sample’s surface, and consider that, in the
presence of applied field, the currents in the individual cir-
cuits I i , (i 51,2,...,N), are chosen such that the magnetic
flux F i through every circuit is zero. This equivalence can be
shown from the following formulation.

ConsiderN11 circuits, with i 50 corresponding to a
loop of radiusR ~much larger than dimensionsa, b, andc!
carrying currentI 0 and generating applied fieldHa5I 0/2R at
the center of the loop where we place the superconducting
samples~considered a set ofN screening rectangular cir-
cuits!. The total magnetic energy can be written as

E5
1

2
L0I 0

21(
i 51

N

M0i I 0I i1
1

2 (
i 51

N

Li I i
2

1
1

2 (
i 51

(
j 51,j Þ i

N

M i j I i I j , ~3!

whereMi j is the mutual inductance between circuitsi and j.
The terms,

M0i I 05
m0aibi

2R
I 05F0i , ~4!

are the contribution of the applied magnetic field to the mag-
netic flux through circuiti. The variation of energy upon
changing the current values in the sample is

dE5(
i 51

N S F0i1LiI i1 (
j 51,j Þ i

N

M i j I j D dI i . ~5!

Since this holds for anydI i , we conclude

F0i1Li I i1 (
j 51,j Þ i

N

M i j I j50. ~6!

The left side of Eq.~6! is the total flux through circuiti, F i .
So, we have demonstrated that consideration of the energy
minimization leads toF i50 for all i. From Eq.~6! and de-
fining Mii 5Li , we note that one could obtain the value of
the currents induced from the following expression:

I j52(
i 51

N

Mi j
21F0i . ~7!

The expressions for mutual inductance between rectan-
gular circuits with the geometrical center in the same axis
~considered in this work! are reviewed in Appendix A.

Once currentsI i have been calculated, we can calculate
the magnetization, which has only thez component, from

Mz5
1

V (
i

I iaibi , ~8!

whereV5abc is the volume of the superconducting sample.
The real component of complex ac susceptibility can be cal-
culated as the initial slope of the magnetization versus the
applied magnetic field curve:

x85 lim
Ha→0

Mz

Ha
. ~9!

In order to check the accuracy of our model we calculate
the total magnetic field~created by currents superimposed on
the applied field! inside the superconductor. The magnetic
field is directly calculated from Biot–Savart law, adding the
contribution of all linear rectangular currents~see Appendix
B for the formulas!.

We note that the model is just an approximation since
rectangular currents over the surface of an orthorhombic
sample do not exactly shield a uniformly applied magnetic
field throughout its interior. However, the model presented,
although approximate, is simple and accurate enough as long
as c!a is not considered. When applied to experimental
data, the model is free of fitting parameters, and only the
geometric dimensions of the sample should be implemented
in the calculations.

III. RESULTS

A. Calculated surface current distribution

We have used the energy minimization procedure14 to
calculate the induced current distribution of three different
samples with differentc dimensions along the direction of
the applied field~see Fig. 2!. In all the cases, we have con-
sideredb5a.

Figure 2 shows that the induced current on faces which
are perpendicular to the applied magnetic field hardly de-
pends on the dimension along it,c. This observation is also
true in the case of infinitely long bars (b@a),6 and for finite
cylinders.14 This means that, given an applied magnetic field,
the induced currents that circulate on the top and the bottom
faces of the superconductor create almost the same magnetic
field, irrespective of the length of the sample. We observe
that, close to the center of the top and bottom faces, the
current increases linearly. When it reaches the edge of the
orthorhomb, it diverges~actually, the divergence is a conse-
quence of the discretization used and the consideration of
l50!. On the lateral faces, a plateau of nearly constant cur-
rent value is observed. As expected, the plateau is more ex-
tensive for longer samples and the value of the induced cur-
rent density depends on the aspect ratioc/a. The value of the

488 J. Appl. Phys., Vol. 96, No. 1, 1 July 2004 Navau et al.
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current at the plateau tends to be equal to the magnetic field
applied when the value ofc/a increases. In the trivial limit
of a long square bar with uniformly applied magnetic field
along the sample,c@a, the value of the induced superficial
current density equals2Ha , exactly.

From the above behavior we observe that demagnetiza-
tion fields come both from the faces perpendicular to the
applied field and from the lateral faces. However, the top and
bottom faces create a field that is very weakly dependent on
ratio c/a, so its contribution to the demagnetization is quite
independent of the value ofc/a. Thus, the differences ob-
served in the measurements of magnetic properties will arise
chiefly from the different behavior of lateral faces, not only
because of variation in the size of their extension but also
because the currents induced there change asc/a does.

We also see in Fig. 2 that the induced current distribution
on the top and bottom faces of a square-based sample of
orthorhombic shape is not very different from that of a cir-
cular thin cylinder with radius equal to the semiside of the
orthorhomb. For comparison, this last expression~known
analytically19! is also plotted~solid line! in Fig. 2.

B. Experimental and calculated magnetization

We have measured the magnetization of two sets of
high-quality niobium samples of orthorhombic shape~group
Q: square base; group R: rectangular base!. Their dimensions
are summarized in Table I.

All samples were obtained from the same piece of nio-
bium obtained after two electron-beam fusion processes. Af-
ter machining, they were cleaned in an ultrasound bath, and
later using a solution of HCl–HNO3.

We have determined the crystallographic quality of all
samples by both x-ray diffraction~XRD! and scanning elec-
tron microscopy ~SEM!. For XRD we used a Siemens
D/5000 difractometer and for SEM we used a JEOL JSM-
5800/LV microscope.

Magnetic characterization was performed through both
the magnetization as a function of the external dc magnetic
field, M (Ha), and the complex ac magnetic susceptibility as
a function of the absolute temperature,x(T). We performed
the experiments using a Quantum Design MPMS5 supercon-
ducting quantum interference device~SQUID! magnetometer
capable of operating in ranges of 2 K,T,400 K, 0.1 A/m
,h,300 A/m, and 1, f ,1000 Hz, whereT, h andf are the
absolute temperature, the amplitude, and the frequency of the
ac magnetic field, respectively. In all cases, to avoid trapped
magnetic flux, samples were zero field cooled~ZFC! before
each experiment. The magnetic field was always applied
along one axis of the sample.

In Fig. 3 we present our experimental results for magne-
tization of different samples, together with the magnetization
calculated from Eq.~8! ~shown by solid lines!. We observe
good agreement in the initial straight part of magnetization
for the rectangular samples, and also for the squared
samples, except for the thinner~lower c! samples. We ob-
serve that the model describes well the initial linear part of

FIG. 2. Calculated surface induced current density for a
square based (b5a) sample. Left: Current density on
the bottom face of the superconductor along line
xe(0,a/2), y50, z5c/2. Right: Current density on
the lateral face of the superconductor along linex
5a/2, y50, zP(c/2,0). For comparison, we have also
plotted~solid curve! the value of the current density on
one face of a circular thin film disk or radiusR5a
~after Ref. 19!.

TABLE I. Name and dimensions of the niobium samples measured. Note
that for rectangular samples~R! the relationb/a is approximately 1.4 in all
samples. The variation between nominal and real values of the dimensions is
smaller than 2%.

Name
a

~mm!
b

~mm!
c

~mm!

R1 1.44 2.04 6.52
R3 1.48 2.06 4.12
R5 1.44 2.06 2.04
R7 1.46 2.04 1.06
R9 1.44 2.06 0.32
Q1 1.48 0.36
Q3 1.42 1.02
Q5 1.46 1.98
Q7 1.44 4.05
Q9 1.50 6.50
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the magnetization of a superconductor that corresponds to
the range of fields in which it is in the completely shielded
state, except for samples withc!a, as already stated. We
also note that calculation of rectangular samples gives a bet-
ter approximation than that for squared ones. We discuss this
in Sec. IV. We observe that, for a fixedb/a ratio, the initial
slope increases as thec/a ratio decreases because of increas-
ing demagnetizing effects.14

C. Experimental, calculated, and approximate
susceptibility

From the experimental magnetization results~Fig. 3!, we
can obtain values of the dc susceptibility. We also carried out
measurements of the complex ac magnetic susceptibility for
the two sets of samples. The results, together with the model
calculations, after Eq.~9!, are shown in Fig. 4.

In Fig. 4 we observe good agreement between experi-
mental results and theoretical predictions, showing that our
model is accurate enough to describe the susceptibility in
samples of orthorhombic shape. As seen in Fig. 4, for fixed
b/a, the susceptibility increases~in absolute value! as the
sample gets thinner, and it tends toward21 for very long
samples, as expected. By fixing thec/a ratio, it is observed
that the susceptibility is larger for rectangular samples~group
R! than for square ones~group Q!.

In Fig. 5 we show the theoretically calculated suscepti-
bility for different b/a and c/a ratios. We can observe two
different aspects. First, for a fixedb/a value, as dimensionc
decreases, the magnetic susceptibility increases~in absolute
value! since demagnetization fields are more important at
small c. In fact, for c!a, the fields due to thez56c/2
planes give the most important contribution to the total field

and magnetization~similar to the behavior found for
cylinders14!. For longc, the susceptibility tends toward21,
indicating no demagnetization fields~the long sample ori-
ented in the direction of applied magnetic field!. On the other
hand, by fixing the value of thec/a ratio and increasingb/a,
the susceptibility increases in absolute value, reaching a
maximum saturation value for a very largeb/a ratio ~i.e., a
long bar with applied magnetic field transverse to the longer
dimension!. This limit has already been calculated.6,7 More-
over, whenb/a becomes small, the susceptibility, as long as
c.a, also tends toward21, since this case corresponds to a
slab with a longitudinally applied magnetic field.

The values for the susceptibility can be readily approxi-
mated by a phenomenological expression which includes all
the cases. Similar to the equation presented by Brandt11 for

FIG. 3. Measured~symbols! and calculated~solid curves! initial magnetiza-
tion of samples in Table I.~a! Samples with a rectangular base of ratio
b/a.1.4 and~b! samples with a square base.

FIG. 4. Measured and calculated initial susceptibility for different samples
in Table I. Open symbols correspond to ac magnetic susceptibility measure-
ments; closed symbols correspond to the dc measurements. Curves show
model calculations.

FIG. 5. Calculations of the initial susceptibility as a function ofc/a for
different values of the ratiob/a. Numerically calculated values are plotted
by symbols, and values from the empirical formula@Eq. ~10!# are shown by
solid curves.
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the case of finite cylinders, we can fit the calculated suscep-
tibility results with a simple empirical formula:

x ini8 5212
p

4g
2

p

4g
tanhFg2 logS 11

2

g D G , ~10!

where the parameterg is defined as

g5
c

a
1

c

b
. ~11!

In Fig. 5 we have also plotted Eq.~10! for different values of
b/a and c/a and compare them with the calculated values
following the model presented.

We observe that Eq.~10! depends only on one parameter
that includes all the geometrical dimensions of the system. In
particular, for a thin strip,b@a@c, so g→c/a!1. In this
case Eq.~10! tends toward2(pa/4c) which agrees with the
initial susceptibility for a thin strip calculated in Ref. 20.
There are other interesting cases. For a long bar transverse to
the applied field with a squared section (c5a!b) we obtain
x ini8 52123p/8522.178 097. For a cube (a5b5c), x ini8
5212p/5521.628 319. In Fig. 6 we have plotted some
interesting geometries and their initial susceptibility.

IV. DISCUSSION

Due to the symmetry of the system studied, thea andb
dimensions are interchangeable. Moreover, the whole system
can be scaled to either dimensiona or b. Therefore, it is
sufficient to calculate just those cases whereb.a. For ex-
ample, if we considera the minimum dimension perpendicu-
lar to the direction of applied magnetic field, previous argu-
ments have given

Mz~a,b,c!5Mz~b,a,c!

5Mz~1,b/a,c/a!5Mz~1,a/b,c/b!, ~12!

x8~a,b,c!5x8~b,a,c!

5x8~1,b/a,c/a!5x8~1,a/b,c/b!. ~13!

Therefore, these conditions allow calculation of the case
of b,a by calculating just its conjugated case. Since our
model is more accurate for samples with a largerb/a ratio, it
is straightforward to conclude that the least amount of accu-
racy is obtained for square-based samplesb5a. Actually, as
Eq. ~10! shows, for a description of the susceptibility, the
orthorhombic system can be described by only one param-
eter,g5c/a1c/b.

As we have mentioned, as a consequence of our approxi-
mation of considering rectangularly shaped currents, the
magnetic field applied is not fully shielded inside the super-
conductor. This is true even when the values of the flowing
current minimize the magnetic energy. After the induced cur-
rents are determined, we can calculate the total field in any
region of space just by adding the contribution of each cur-
rent to the applied magnetic field. Even in the case ofb
5a, which is the ratio where the model is expected to be less
accurate, the results obtained are good enough as long asc
has a value not much lower than that ofa. We show in Fig.
7 ~bottom! the calculatedz component of the magnetic field
in the z50 plane for a squared sample withb5a and c/a
50.1. Shielding of the applied magnetic field is not com-
plete. This is directly related to the square shape of the model
circuits. It is clear that this effect should decrease asc/a
increases, or, alternatively, asb/a differs from unity. For
comparison, we also show in Fig. 7~top! the case forb/a
51.4 andc/a51 which corresponds to one of the samples
of group R. In this case, we observe that the shielding is
much better, as expected.

There are several forms by which to quantify the accu-
racy of modeled circuits. For example, the magnitudeE
5(VSCBa

2)21*VSC
uBu2dV, where VSC is the volume of the

superconductor andB represents the total magnetic field cal-
culated, gives an idea of the relative deviation of the calcu-

FIG. 6. Some geometries and their values of initial susceptibility calculated
from the empirical formula, Eq.~10!.

FIG. 7. Total magnetic field in thez50 center plane.~Top! b/a51.4,
c/a51; ~bottom! b/a51, c/a50.1.
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lated magnetic field from the complete shielding value~in
exact shielding the above quantity should give a zero value!.
For the two cases shown in Fig. 7 we have obtainedE
50.002 for the rectangularb/a51.4, c/a51.0 case andE
50.022 for the case of theb/a51, c/a50.1 sample. These
quantities indicates that the shielding, even in the less accu-
rate case, is good enough for most purposes, especially when
we try to reproduce experimental data. We should note, how-
ever, that consideration of linear circuits makes the calcu-
lated field diverge very close to those circuits. In the previ-
ous calculations we have used 60360 ~face3lateral! linear
circuits for the rectangular sample and 130330 circuits for
the squared sample and we have evaluated the integral over
the volume xP(2a/21a/100,a/22a/100), yP(2b/2
1b/100,b/22b/100), and zP(2c/21c/100,c/22c/100).
We have found that our results are essentially unchanged
when finer meshes are used.

V. CONCLUSIONS

In this work we have presented a numerical procedure
which allows one to describe the measured magnetic proper-
ties of a superconductor in the completely shielded state. Our
model is very simple, however very useful, since there are no
fitting parameters and there is no need to impose boundary
conditions. Although the induced current distribution ob-
tained from the model is only approximate, it allows one to
determine in an approximate way the picture of flowing in-
duced currents that shield the magnetic field applied to
samples of orthorhombic shape. Thus, it can be used to de-
scribe the demagnetization effects for them. In particular,
calculation of the magnetization involves the integral of the
currents. This means that details of the induced currents be-
come blurred in calculation of the magnetization. Since the
geometry we consider for the induced current distribution is
not much different from the real one, the resulting calculated
magnetization will have sufficient accuracy for practical use.
Also, our model is appropriate for application to geometries
other than orthorhombic whenever an approximate current
distribution can be implemented. Actually, the calculation
procedure for obtaining the current distribution gives exact
results, within numerical accuracy, if the direction of the cur-
rent induced can be established by symmetry arguments.
This is particularly true for cylinders,14 even thin films, long
bars with longitudinally applied field~the trivial case of
shielding current withK5Ha), and long bars with trans-
versely applied field~the limiting case of the model pre-
sented forb→` or a→`).6,7

Thus, using rectangular currents to model superconduct-
ors of orthorhombic shape, we have found that the induced
current distribution over the faces perpendicular to the ap-
plied magnetic field is barely dependent on the length of the
sample. The main differences in magnetic measurements be-
tween samples with differentc/a ratios come from the dif-
ferent induced current distributions on the lateral faces. In
this case, the field created by the perpendicular faces in-
creases the value of the total field on the lateral faces over
those regions close to the edges of the sample. This results in
a larger value of current on those faces. For the lateral sur-
face at points far from the edges, as the sample gets larger
there is a plateau in the value of the surface current that~in
magnitude! goes toHa ~which is the minimum value!. There-
fore, for thinner samples there is a larger average value of
current induced, and it produces larger demagnetization ef-
fects. This is observed as larger initial slopes in the magne-
tization versus applied field curves, and corresponds to larger
magnetic susceptibility.
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APPENDIX A: MUTUAL INDUCTANCE BETWEEN
RECTANGULAR CENTERED LINEAR CIRCUITS

A key issue for using the model presented here is its
simplicity and its easily reproducible procedure. However,
the mutual inductance values that enter into the calculation
are not straightforward. In any case, we can find its analytical
expression by using the Neumann formula.21 To do this, we
consider two rectangular circuits lying on parallel planes
separated by a distanceh, centered between their geometrical
centers, with their sides parallel in pairs. Consider the first
circuit with dimensions ofb anda, and the second one with
d andc along thex andy axes, respectively.

We defineF(t1 ,t2 ,t3) as

F~ t1 ,t2 ,t3!5E
t1

2t1
dx1E

t2

2t2
dx2

1

At3
21~x12x2!2

5A~ t12t2!21t3
22A~2t12t2!21t3

22A~ t11t2!21t3
21A~2t11t2!21t3

2

1t2 log@2t11t21A~ t12t2!21t3
2#1t1 log@ t12t21A~ t12t2!21t3

2#2t2 log@2t12t21A~2t12t2!21t3
2#

2t1 log@ t11t21A~2t12t2!21t3
2#2t2 log@ t11t21A~ t11t2!21t3

2#2t1 log@2t12t21A~ t11t2!21t3
2#

1t2 log@2t11t21A~2t11t2!21t3
2#1t1 log@ t12t21A~2t11t2!21t3

2#. ~A1!
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The mutual inductance between two rectangular coils is

M5
2m0

4p
„F$a/2,c/2,A@~b2d!/2#21h2%

1F$a/2,2c/2,A@~b1d!/2#21h2%

1F$2b/2,2d/2,A@~a2c!/2#21h2%

1F$2b/2,d/2,A@~a1c!/2#21h2%…. ~A3!

APPENDIX B: MAGNETIC FIELD DUE TO A
RECTANGULARLY SHAPED CIRCUIT

Consider a planar~in thexy plane!, rectangularly shaped
circuit of dimensionsb anda along thex andy axes, respec-
tively. Consider that the circuit carries currentI. The origin is
taken to be the geometrical center of the circuit.

We can calculate the vector potential created by the lin-
ear current. We define

G~ t1 ,t2 ,t3 ,t4!5 lnF t22t41A~ t22t4!21t3
2

t12t41A~ t12t4!21t3
2G . ~B1!

Vector potentialA at r5xi1yj1zk has two compo-
nents:

Ax5IG@2b/2,b/2,A~y2a/2!21z2,x#

1IG@b/2,2b/2,A~y1a/2!21z2,x#, ~B2!

Ay5IG@a/2,2a/2,A~x2b/2!21z2,y#

1IG@2a/2,a/2,A~x1b/2!21z2,y#. ~B3!

We can also calculate the magnetic induction,B, from
bothB5¹3A and directly from Biot–Savart law. We define

T~ t1 ,t2 ,t3 ,t4 ,t5!

5
t3

t4
2 F t22t5

A~ t22t5!21t4
2
2

t12t5

A~ t12t5!21t4
2G . ~B4!

It can be proved that the magnetic field created by the linear
circuit is

Bx5
m0 I

4p
$T@a/2,2a/2,2z,A~x2b/2!21z2,y#

1T@2a/2,a/2,2z,A~x1b/2!21z2,y#%, ~B5!

By5
m0 I

4p
$T@2b/2,b/2,z,A~y2a/2!21z2,x#

1T@b/2,2b/2,z,A~y1a/2!21z2,x#%, ~B6!

Bz5
m0 I

4p
$T@a/2,2a/2,~x2b/2!,A~x2b/2!21z2,y#

1T@2a/2,a/2,~x1b/2!,A~x1b/2!21z2,y#

1T@2b/2,b/2,2~y2a/2!,A~y2a/2!21z2,x#

1T@b/2,2b/2,2~y1a/2!,A~y1a/2!21z2,x#%.

~B7!
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