12,616 research outputs found

    On the energy and baseline optimization to study effects related to the δ-phase (CP-/T-violation) in neutrino oscillations at a neutrino factory

    Get PDF
    In this paper we discuss the detection of CP- and T-violation effects in the framework of a neutrino factory. We introduce three quantities, which are good discriminants for a non-vanishing complex phase (δ) in the 3 × 3 neutrino mixing matrix: Δδ, ΔCP and ΔT. We find that these three discriminants (in vacuum) all scale with L/Ev, where L is the baseline and Ev the neutrino energy. Matter effects modify the scaling, but these effects are large enough to spoil the sensitivity only for baselines larger than 5000 km. So, in the hypothesis of constant neutrino factory power (i.e., number of muons inversely proportional to muon energy), the sensitivity on the δ-phase is independent of the baseline chosen. Specially interesting is the direct measurement of T-violation from the "wrong-sign" electron channel (i.e., the ΔT discriminant), which involves a comparison of the ve → vμ and vμ → ve oscillation rates. However, the vμ → ve measurement requires magnetic discrimination of the electron charge, experimentally very challenging in a neutrino detector. Since the direction of the electron curvature has to be estimated before the start of the electromagnetic shower, low-energy neutrino beams and hence short baselines, are preferred. In this paper we show, as an example, the exclusion regions in the Δm212-δ plane using the ΔCP and ΔT discriminants for two concrete cases keeping the same L/Ev ratio (730 km/7.5 GeV and 2900 km/30 GeV). We obtain a similar excluded region provided that the electron detection efficiency is ∼20% and the charge confusion 0.1%. The Δm212 compatible with the LMA solar data can be tested with a flux of 5 × 1021 muons. We compare these results with the fit of the visible energy distributions. © 2002 Elsevier Science B.V. All rights reserved

    Remanence of Ni nanowire arrays: Influence of size and labyrinth magnetic structure

    Full text link
    The influence of the macroscopic size of the Ni nanowire array system on their remanence state has been investigated. A simple magnetic phenomenological model has been developed to obtain the remanence as a function of the magnetostatic interactions in the array. We observe that, due to the long range of the dipolar interactions between the wires, the size of the sample strongly influence the remanence of the array. On the other hand, the magnetic state of nanowires has been studied by variable field magnetic force microscopy for different remanent states. The distribution of nanowires with the magnetization in up or down directions and the subsequent remanent magnetization has been deduced from the magnetic images. The existence of two short-range magnetic orderings with similar energies can explain the typical labyrinth pattern observed in magnetic force microscopy images of the nanowire arrays

    Титульна сторінка та зміст

    Get PDF

    Spin-wave phase inverter upon a single nanodefect

    Full text link
    Local modification of magnetic properties of nanoelements is a key to design future-generation magnonic devices, in which information is carried and processed via spin waves. One of the biggest challenges here is to fabricate simple and miniature phase-controlling elements with broad tunability. Here, we successfully realize such spin-wave phase shifter upon a single nanogroove milled by focused ion beam in a Co-Fe microsized magnonic waveguide. By varying the groove depth and the in-plane bias magnetic field we continuously tune the spin-wave phase and experimentally evidence a complete phase inversion. The microscopic mechanism of the phase shift is based on the combined action of the nanogroove as a geometrical defect and the lower spin-wave group velocity in the waveguide under the groove where the magnetization is reduced due to the incorporation of Ga ions during the ion-beam milling. The proposed phase shifter can easily be on-chip integrated with spin-wave logic gates and other magnonic devices. Our findings are crucial for designing nano-magnonic circuits and for the development of spin-wave nano-optics.Comment: 8 pages, 6 figure
    corecore