22,959 research outputs found

    Group Quantization on Configuration Space: Gauge Symmetries and Linear Fields

    Get PDF
    A new, configuration-space picture of a formalism of group quantization, the GAQ formalism, is presented in the context of a previous, algebraic generalization. This presentation serves to make a comprehensive discussion in which other extensions of the formalism, particularly to incorporate gauge symmetries, are developed as well. Both images are combined in order to analyse, in a systematic manner and with complete generality, the case of linear fields (abelian current groups). To ilustrate these developments we particularize them for several fields and, in particular, we carry out the quantization of the abelian Chern-Simons models over an arbitrary closed surface in detail.Comment: Plain LaTeX, 31 pages, no macros. To appear in J. Math. Phy

    The Electromagnetic and Proca Fields Revisited: a Unified Quantization

    Get PDF
    Quantizing the electromagnetic field with a group formalism faces the difficulty of how to turn the traditional gauge transformation of the vector potential, Aμ(x)→Aμ(x)+∂μφ(x)A_{\mu}(x)\rightarrow A_{\mu}(x)+\partial_{\mu}\varphi(x), into a group law. In this paper it is shown that the problem can be solved by looking at gauge transformations in a slightly different manner which, in addition, does not require introducing any BRST-like parameter. This gauge transformation does not appear explicitly in the group law of the symmetry but rather as the trajectories associated with generalized equations of motion generated by vector fields with null Noether invariants. In the new approach the parameters of the local group, U(1)(x⃗,t)U(1)(\vec{x},t), acquire dynamical content outside the photon mass shell, a fact which also allows a unified quantization of both the electromagnetic and Proca fields.Comment: 16 pages, latex, no figure

    Satellites of Simulated Galaxies: survival, merging, and their relation to the dark and stellar halos

    Full text link
    We study the population of satellite galaxies formed in a suite of N-body/gasdynamical simulations of galaxy formation in a LCDM universe. We find little spatial or kinematic bias between the dark matter and the satellite population. The velocity dispersion of the satellites is a good indicator of the virial velocity of the halo: \sigma_{sat}/V_{vir}=0.9 +/- 0.2. Applied to the Milky Way and M31 this gives V_{vir}^{MW}=109 +/- 22$ km/s and V_{vir}^{M31} = 138 +/- 35 km/s, respectively, substantially lower than the rotation speed of their disk components. The detailed kinematics of simulated satellites and dark matter are also in good agreement. By contrast, the stellar halo of the simulated galaxies is kinematically and spatially distinct from the population of surviving satellites. This is because the survival of a satellite depends on mass and on time of accretion; surviving satellites are biased toward low-mass systems that have been recently accreted by the galaxy. Our results support recent proposals for the origin of the systematic differences between stars in the Galactic halo and in Galactic satellites: the elusive ``building blocks'' of the Milky Way stellar halo were on average more massive, and were accreted (and disrupted) earlier than the population of dwarfs that has survived self-bound until the present.Comment: 13 pages, 11 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    Cosmic M\'enage \`a Trois: The Origin of Satellite Galaxies On Extreme Orbits

    Full text link
    We examine the orbits of satellite galaxies identified in a suite of N-body/gasdynamical simulations of the formation of L∗L_* galaxies in a LCDM universe. Most satellites follow conventional orbits; after turning around, they accrete into their host halo and settle on orbits whose apocentric radii are steadily eroded by dynamical friction. However, a number of outliers are also present, we find that ~1/3 of satellites identified at z=0z=0 are on unorthodox orbits, with apocenters that exceed their turnaround radii. This population of satellites on extreme orbits consists typically of the faint member of a satellite pair that has been ejected onto a highly-energetic orbit during its first approach to the primary. Since the concurrent accretion of multiple satellite systems is a defining feature of hierarchical models of galaxy formation, we speculate that this three-body ejection mechanism may be the origin of (i) some of the newly discovered high-speed satellites around M31 (such as Andromeda XIV); (ii) some of the distant fast-receding Local Group members, such as Leo I; and (iii) the oddly isolated dwarf spheroidals Cetus and Tucana in the outskirts of the Local Group. Our results suggest that care must be exercised when using the orbits of the most weakly bound satellites to place constraints on the total mass of the Local Group.Comment: 10 pages, 6 figures, MNRAS in press. Accepted version with minor changes. Version with high resolution figures available at: http://www.astro.uvic.ca/~lsales/SatPapers/SatPapers.htm

    Algebraic characterization of constraints and generation of mass in gauge theories

    Get PDF
    The possibility of non-trivial representations of the gauge group on wavefunctionals of a gauge invariant quantum field theory leads to a generation of mass for intermediate vector and tensor bosons. The mass parameters "m" show up as central charges in the algebra of constraints, which then become of second-class nature. The gauge group coordinates acquire dynamics outside the null-mass shell and provide the longitudinal field degrees of freedom that massless bosons need to form massive bosons.Comment: 4 pages, LaTeX, no figures; uses espcrc2.sty (twocolumn). Contribution to the "Third Meeting on Constrained Dynamics and Quantum Gravity QG99" held in Sardinia, Italy, on Sept. 1999. To appear in Nucl. Phys. B (Proc. Suppl.

    Dark Halo and Disk Galaxy Scaling Laws in Hierarchical Universes

    Get PDF
    We use cosmological N-body/gasdynamical simulations that include star formation and feedback to examine the proposal that scaling laws between the total luminosity, rotation speed, and angular momentum of disk galaxies reflect analogous correlations between the structural parameters of their surrounding dark matter halos. The numerical experiments follow the formation of galaxy-sized halos in two Cold Dark Matter dominated universes: the standard Omega=1 CDM scenario and the currently popular LCDM model. We find that the slope and scatter of the I-band Tully-Fisher relation are well reproduced in the simulations, although not, as proposed in recent work, as a result of the cosmological equivalence between halo mass and circular velocity: large systematic variations in the fraction of baryons that collapse to form galaxies and in the ratio between halo and disk circular velocities are observed in our numerical experiments. The Tully-Fisher slope and scatter are recovered in this model as a direct result of the dynamical response of the halo to the assembly of the luminous component of the galaxy. We conclude that models that neglect the self-gravity of the disk and its influence on the detailed structure of the halo cannot be used to derive meaningful estimates of the scatter or slope of the Tully-Fisher relation. Our models fail, however, to match the zero-point of the Tully-Fisher relation, as well as that of the relation linking disk rotation speed and angular momentum. These failures can be traced, respectively, to the excessive central concentration of dark halos formed in the Cold Dark Matter cosmogonies we explore and to the formation of galaxy disks as the final outcome of a sequence of merger events. (abridged)Comment: submitted to The Astrophysical Journa

    Evolução biológica nos livros didáticos de Biologia do ensino médio

    Get PDF
    Resultados parciais de pesquisa de mestrado em andamento, numa abordagem qualitativa, que visou analisar como está estruturada a evolução biológica nos livros didáticos de Biologia do Ensino Médio aprovados pelo Programa Nacional do Livro Didático para o Ensino Médio (PNLEM 2007/2009). Foram analisadas oito das nove obras aprovadas. Investigou-se como está distribuído o tema ao longo dos livros. O quadro teórico construído baseou-se em trabalhos sobre a evolução biológica tanto no contexto científico quanto no escolar; assim como pesquisas em educação tendo como objeto de estudo os livros didáticos. A tendência à organização disciplinar e a possibilidade de diversas abordagens são algumas de nossas discussões

    Improved Approximate String Matching and Regular Expression Matching on Ziv-Lempel Compressed Texts

    Full text link
    We study the approximate string matching and regular expression matching problem for the case when the text to be searched is compressed with the Ziv-Lempel adaptive dictionary compression schemes. We present a time-space trade-off that leads to algorithms improving the previously known complexities for both problems. In particular, we significantly improve the space bounds, which in practical applications are likely to be a bottleneck
    • …
    corecore