55 research outputs found

    best practices in bioassay development to support registration of biopharmaceuticals

    Get PDF
    Biological activity is a critical quality attribute for biopharmaceuticals, which is accurately measured using an appropriate relative potency bioassay. Developing a bioassay is a complex, rigorous undertaking that needs to address several challenges including modelling all of the mechanisms of action associated with the biotherapeutic. Bioassay development is also an exciting and fast evolving field, not only from a scientific, medical and technological point of view, but also in terms of statistical approaches and regulatory expectations. This has led to an industry-wide discussion on the most appropriate ways to develop, validate and control the bioassays throughout the drug lifecycle

    Cortical Plasticity of Audio–Visual Object Representations

    Get PDF
    Several regions in human temporal and frontal cortex are known to integrate visual and auditory object features. The processing of audio–visual (AV) associations in these regions has been found to be modulated by object familiarity. The aim of the present study was to explore training-induced plasticity in human cortical AV integration. We used functional magnetic resonance imaging to analyze the neural correlates of AV integration for unfamiliar artificial object sounds and images in naïve subjects (PRE training) and after a behavioral training session in which subjects acquired associations between some of these sounds and images (POST-training). In the PRE-training session, unfamiliar artificial object sounds and images were mainly integrated in right inferior frontal cortex (IFC). The POST-training results showed extended integration-related IFC activations bilaterally, and a recruitment of additional regions in bilateral superior temporal gyrus/sulcus and intraparietal sulcus. Furthermore, training-induced differential response patterns to mismatching compared with matching (i.e., associated) artificial AV stimuli were most pronounced in left IFC. These effects were accompanied by complementary training-induced congruency effects in right posterior middle temporal gyrus and fusiform gyrus. Together, these findings demonstrate that short-term cross-modal association learning was sufficient to induce plastic changes of both AV integration of object stimuli and mechanisms of AV congruency processing

    Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools

    Get PDF
    Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis

    Emergence of qualia from brain activity or from an interaction of proto-consciousness with the brain: which one is the weirder? Available evidence and a research agenda

    Get PDF
    This contribution to the science of consciousness aims at comparing how two different theories can explain the emergence of different qualia experiences, meta-awareness, meta-cognition, the placebo effect, out-of-body experiences, cognitive therapy and meditation-induced brain changes, etc. The first theory postulates that qualia experiences derive from specific neural patterns, the second one, that qualia experiences derive from the interaction of a proto-consciousness with the brain\u2019s neural activity. From this comparison it will be possible to judge which one seems to better explain the different qualia experiences and to offer a more promising research agenda

    Significance of beta-band oscillations in Autism Spectrum Disorders during motor response inhibition tasks: a MEG study

    Get PDF
    In Autism Spectrum Disorders (ASD), impaired response inhibition and lack of adaptation are hypothesized to underlie core ASD symptoms, such as social communication and repetitive, stereotyped behavior. Thus, the aim of the present study was to compare neural correlates of inhibition, post-error adaptation, and reaction time variability in ASD and neuro-typical control (NTC) participants by investigating possible differences in error-related changes of oscillatory MEG activity. Twelve male NTC (mean age 20.3 ± 3.7) and fourteen male patients with ASD (mean age 17.8 ± 2.9) were included in the analysis. Subjects with ASD showed increased error-related reaction time variability. MEG analysis revealed decreased beta power in the ASD group in comparison to the NTC group over the centro-parietal channels in both, the pre-stimulus and post-response interval. In the ASD group, mean centro-parietal beta power negatively correlated with dimensional autism symptoms. In both groups, false alarms were followed by an early increase in temporo-frontal theta to alpha power; and by a later decrease in alpha to beta power at central and posterior sensors. Single trial correlations were additionally studied in the ASD group, who showed a positive correlation of pre-stimulus beta power with post-response theta, alpha, and beta power, particularly after hit trials. On a broader scale, the results deliver important insights into top-down control deficits that may relate to core symptoms observed in ASD

    Being user-oriented: convergences, divergences, and the potentials for systematic dialogue between disciplines and between researchers, designers, and providers

    Get PDF
    The challenge this panel addresses is drawn from intersecting literature reviews and critical commentaries focusing on: 1) user studies in multiple fields; and 2) the difficulties of bringing different disciplines and perspectives to bear on user‐oriented research, design, and practice. 1 The challenge is that while we have made some progress in collaborative work, we have some distance to go to become user‐oriented in inter‐disciplinary and inter‐perspective ways. The varieties of our approaches and solutions are, as some observers suggest, an increasing cacophony. One major difficulty is that most discussions are solution‐oriented, offering arguments of this sort ‐‐ if only we addressed users in this way
 Each solution becomes yet another addition to the cacophony. This panel implements a central approach documented for its utility by communication researchers and long used by communication mediators and negotiators ‐‐ that of focusing not on communication but rather on meta‐communication: communicating about communication. The intent in the context of this panel is to help us refocus attention from too frequent polarizations between alternative solutions to the possibility of coming to understand what is behind the alternatives and where they point to experientially‐based convergences and divergences, both of which might potentially contribute to synergies. The background project for this panel comes from a series of in‐depth interviews with expert researchers, designers, and providers in three field groupings ‐‐ library and information science; human computer interaction/information technology; and communication and media studies. One set of interviews involved 5‐hour focus groups with directors of academic and public libraries serving 44 colleges and universities in central Ohio; the second involved one‐on‐one interviews averaging 50 minutes with 81 nationally‐internationally known experts in the 3 fields, 25‐27 interviews per field. Using Dervin\u27s Sense‐Making Methodological approach to interviewing, the expert interviews of both kinds asked each interviewee: what he/she considered to be the big unanswered questions about users and what explained why the questions have not been answered; and, what he/she saw as hindering versus helping in attempts to communicate about users across disciplinary and perspective gaps. 2 The panel consists of six teams, two from each field. Prior to the panel presentation at ASIST, each team will have read the set of interviews and completed impressionistic essays of what patterns and themes they saw as emerging. At this stage, team members will purposively not homogenize their differences and most will write solo‐authored essays that will be placed on a web‐site accessible to ASIST members prior to the November meeting. In addition, at least one systematic analysis will be completed and available online. 3 At the ASIST panel, each team\u27s leader will present a brief and intentionally provocative impressionist account of what his/her team came to understand about our struggles communicating across fields and perspectives about users. Again, each team will purposively not homogenize its own differences in viewpoints, but rather highlight them as fodder for discussion. A major purpose will be to invite audience members to join the panel in discussion. At least 20 minutes will be left open for this purpose

    Baseline Surveillance in Li-Fraumeni Syndrome Using Whole-Body Magnetic Resonance Imaging: A Meta-analysis.

    Get PDF
    Importance Guidelines for clinical management in Li-Fraumeni syndrome, a multiple-organ cancer predisposition condition, are limited. Whole-body magnetic resonance imaging (WBMRI) may play a role in surveillance of this high-risk population.Objective To assess the clinical utility of WBMRI in germline TP53 mutation carriers at baseline.Data sources Clinical and research surveillance cohorts were identified through the Li-Fraumeni Exploration Research Consortium.Study selection Cohorts that incorporated WBMRI for individuals with germline TP53 mutations from January 1, 2004, through October 1, 2016, were included.Data extraction and synthesis Data were extracted by investigators from each cohort independently and synthesized by 2 investigators. Random-effects meta-analysis methods were used to estimate proportions.Main outcomes and measures The proportions of participants at baseline in whom a lesion was detected that required follow-up and in whom a new primary malignant neoplasm was detected.Results A total of 578 participants (376 female [65.1%] and 202 male [34.9%]; mean [SD] age, 33.2 [17.1] years) from 13 cohorts in 6 countries were included in the analysis. Two hundred twenty-five lesions requiring clinical follow-up were detected by WBMRI in 173 participants. Sixty-one lesions were diagnosed in 54 individuals as benign or malignant neoplasms. Overall, 42 cancers were identified in 39 individuals, with 35 new localized cancers treated with curative intent. The overall estimated detection rate for new, localized primary cancers was 7% (95% CI, 5%-9%).Conclusions and relevance These data suggest clinical utility of baseline WBMRI in TP53 germline mutation carriers and may form an integral part of baseline clinical risk management in this high-risk population

    Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects

    Get PDF
    Over the last decade, pioneering liver-directed gene therapy trials for haemophilia B have achieved sustained clinical improvement after a single systemic injection of adeno-associated virus (AAV) derived vectors encoding the human factor IX cDNA. These trials demonstrate the potential of AAV technology to provide long-lasting clinical benefit in the treatment of monogenic liver disorders. Indeed, with more than ten ongoing or planned clinical trials for haemophilia A and B and dozens of trials planned for other inherited genetic/metabolic liver diseases, clinical translation is expanding rapidly. Gene therapy is likely to become an option for routine care of a subset of severe inherited genetic/metabolic liver diseases in the relatively near term. In this review, we aim to summarise the milestones in the development of gene therapy, present the different vector tools and their clinical applications for liver-directed gene therapy. AAV-derived vectors are emerging as the leading candidates for clinical translation of gene delivery to the liver. Therefore, we focus on clinical applications of AAV vectors in providing the most recent update on clinical outcomes of completed and ongoing gene therapy trials and comment on the current challenges that the field is facing for large-scale clinical translation. There is clearly an urgent need for more efficient therapies in many severe monogenic liver disorders, which will require careful risk-benefit analysis for each indication, especially in paediatrics

    A Frame-Based Theory of Information Behavior: A Grounded Theory Study

    No full text
    Thesis (Ph.D.)--University of Washington, 2012

    Temporal characteristics of audiovisual information processing

    Full text link
    In complex natural environments, auditory and visual information often have to be processed simultaneously. Previous functional magnetic resonance imaging (fMRI) studies focused on the spatial localization of brain areas involved in audiovisual (AV) information processing, but the temporal characteristics of AV information flow in these regions remained unclear. In this study, we used fMRI and a novel information-theoretic approach to study the flow of AV sensory information. Subjects passively perceived sounds and images of objects presented either alone or simultaneously. Applying the measure of mutual information, we computed for each voxel the latency in which the blood oxygenation level-dependent signal had the highest information content about the preceding stimulus. The results indicate that, after AV stimulation, the earliest informative activity occurs in right Heschl's gyrus, left primary visual cortex, and the posterior portion of the superior temporal gyrus, which is known as a region involved in object-related AV integration. Informative activity in the anterior portion of superior temporal gyrus, middle temporal gyrus, right occipital cortex, and inferior frontal cortex was found at a later latency. Moreover, AV presentation resulted in shorter latencies in multiple cortical areas compared with isolated auditory or visual presentation. The results provide evidence for bottom-up processing from primary sensory areas into higher association areas during AV integration in humans and suggest that AV presentation shortens processing time in early sensory cortices
    • 

    corecore