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ABSTRACT
Biological activity is a critical quality attribute 
for biopharmaceuticals, which is accurately 
measured using an appropriate relative potency 
bioassay. Developing a bioassay is a complex, 
rigorous undertaking that needs to address several 
challenges including modelling all of the mecha-
nisms of action associated with the biotherapeutic. 
Bioassay development is also an exciting and fast 
evolving field, not only from a scientific, medical 
and technological point of view, but also in terms 
of statistical approaches and regulatory expecta-
tions. This has led to an industry-wide discussion 
on the most appropriate ways to develop, validate 
and control the bioassays throughout the drug 
lifecycle.

The BioPhorum Development Group (https://www.biophorum.com) is an 
industry-wide consortium, enabling the sharing of best practices for the devel-
opment of biopharmaceuticals. The intent of this paper is to present a collective 
opinion of the BioPhorum Development Group and to discuss the inherent 
challenges and industry-proven approaches leading to the successful devel-
opment, registration and implementation of a bioassay to support commer-
cialization.

For biotherapeutics, a selective, physiologically relevant bioassay is essential 
to report on the product’s potency and stability, by providing an assessment of 
the molecule’s biological activity. Bioassays, in principle, can range from recog-
nition of a particular antigen in a simple binding method, through systems as 
complex as blocking an inhibitory ligand that restores a co-stimulatory effect. 
Selection of an appropriate method has its challenges rooted not only in the 
need to mimic the mechanism of action (MOA), but also because bioassays 
can be costly to develop, perform, transfer and maintain. Despite efforts to 
implement measures to ensure method control, cell-based bioassays can be 
inherently variable and often lack the precision and robustness of biophysical 
methods simply because they use living organisms, tissues or cells.

It is generally agreed by regulators that a phased approach to the devel-
opment of bioassays be implemented. It is often advantageous to start with a 
binding method for the early phases of product development, such as enzyme-
linked immunosorbent assays (ELISAs) or surface-plasmon resonance (SPR) 
techniques. This approach allows time for the development of more complex 
bioassays (typically cell-based) by later phases. However, the sooner a relevant 
MOA-based bioassay is developed the better, not only to gain greater process 
and product understanding but also to gain a better understanding of method 
performance prior to pivotal clinical trials. Cell-based bioassays should be 
qualified and monitored over the span of clinical development to have an 
accurate understanding of the critical steps and components of the assay. In 
recent years, there has been more in-depth discussion between industry and 
regulators on whether a cell-based bioassay is always required before regis-
tration. The growing consensus seems to be that the decision should be driven 
by a product’s therapeutic MOA. In cases where the MOA is simply binding to 
a target, a surrogate method, such as a protein binding or competitive binding 
assay, may be sufficient for the determination of potency. In some cases, 
regulatory agencies have been amenable to implement surrogate, non-cell-
based bioassays if an existing cell-based bioassay is demonstrated to be too 
variable or not amenable for a quality control environment [1]. In these cases, it 
may be advisable to move the cell-based bioassay to the characterization panel.

MECHANISM OF ACTION & ITS INFLUENCE ON 
POTENCY & CONTROL STRATEGIES
Design strategies for bioassays are driven by the drug’s intended physiological 
MOA. Unlike other analytical techniques, bioassays are almost always unique 
for each therapeutic. A well-designed bioassay will accurately capture the 
biological activity of a drug candidate. Common MOAs of therapeutics include 
direct binding to soluble targets (e.g., ligands, cytokines and enzymes), or to 
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cell-surface receptors in either an inhibitory 
or agonistic manner. Recombinant 
antibodies represent the majority of current 
clinical biotherapeutics [2–5]. As a result, 
the majority of the following guidance will 
reflect recommended approaches for 
antibody therapeutics, with additional 
modalities specifically highlighted where 
appropriate. Figure 1 depicts four common 
MOAs typical for monoclonal antibodies 
including target sequestering, antibody-
dependent cellular phagocytosis, antag-
onism of cell-surface receptors and 
Fc-mediated immune cytotoxicity (e.g., 
antibody-dependent cellular cytotoxicity or 
complement-dependent cytotoxicity). 

Each MOA will require a different 
approach when considering the bioassay 
design. In the case of monoclonal 
antibodies and related recombinant proteins, 
secondary, tertiary, or synergistic MOAs may 
be discovered during development. This 
biological complexity further contributes to 
the challenge of developing MOA-reflective 
assays to wholly capture the candidate 
molecule’s putative therapeutic biological 
activity [6–10]. In some cases where multiple 
MOAs exist in a single molecule, a combi-
nation assay that measures all MOAs in a 
single assay may be suitable for release and 
stability testing with secondary character-
ization assays developed to measure the 
individual activities of each MOA.

Across the spectrum of analytical 
assays, quantitation of a drug’s MOA and 
implied higher order structure, potency and 
efficacy is unique to the bioassay, and as 
such is an expected part of any analytical 
package for a biotherapeutic [11].

As the biotherapeutic progresses through 
the clinical lifecycle, the analytical package 
is refined as part of the overall process 
and analytical control strategy (PACS) 
for the molecule, a step in the quality-by-
design approach to process development. 
The PACS provides the product-specific 
portion of the overall manufacturing control 
strategy, providing a detailed justification 
and description of the control elements to 
be applied to the control of critical quality 
attributes (CQAs). In the early clinical stages, 
assessment of criticality is understood to 
be relatively uncertain due to limited under-
standing of the molecule’s characteristics, 
susceptibility to process variations and 
changes, and the subsequent clinical impact 

due to limited data. However, in preparation 
for BLA registration, a cross-functional 
effort across the organization is typically 
initiated for a more comprehensive charac-
terization of the molecule’s structure along 
with greater clinical data, with the goal to 
gain more insight into CQAs and develop 
more robust PACSs.

While many therapeutic antibody candi-
dates fall under the guidance of the Centre 
for Drug Evaluation and Research (CDER), 
the sister organization Centre for Biologic 
Evaluation and Research (CBER) provides 
clear guidance regarding bioassay life-cycle 
management with the expectation that as 
candidate molecules progress through the 
clinic, a cell-based functional bioassay that 
more closely models the molecule’s thera-
peutic activity will be evaluated  [12,13]. 
To evaluate the fitness of the cell-based 
bioassay to replace or supplement a binding 
assay, comparability experiments must 
be conducted to successfully bridge from 
binding to a cell-based potency bioassay. 
At a minimum, a bridging study should 
evaluate precision, accuracy, linearity 
and stability indicating properties using 
degraded and other samples [13]. The best 
bioassays to support commercial release 
(binding or cell-based) recognize degraded 
product as well as high-potency samples, 
and have adequate precision and accuracy 
to support a release specification range. It 
is common practice to inform, discuss and 
seek pre-approval of novel or non-routine 
potency strategies with the relevant 
regulatory agencies prior to filings to ensure 
seamless and successful BLAs.

INNOVATIVE ASSAY FORMATS
In recent years, innovative assay formats 
(e.g., reporter gene and second messenger 
assays) have emerged as drug discovery 
tools [12]. Some of these assays have subse-
quently found their way into cell-based 
assays for drug development [14]. Charac-
teristics of these assays include their ability 
to measure the regulation of cellular 
signalling events upon drug treatment 
instead of analyzing the respective 
downstream output processes such as 
proliferation, toxicity or cytokine release. 
New non-cell-based technologies have also 
emerged (e.g., homogeneous proximity-
based readouts); however, the current 
practice by companies reported in the survey 

indicates that these formats have not been 
widely adopted.

Commonly used cell-based reporter 
assays are based on stably-transfected 
vectors encoding luciferase or other reporter 
genes. Gene expression is then controlled by 
an inducible promoter where the production 
of reporter protein is directly related to the 
binding of transcription factors involved 
in the drug’s MOA to their corresponding 
response elements. The outputs of these 
assays are easily quantitated via readily 
available plate readers.

The simplicity of these assays, combined 
with shorter assay times (hours vs days), 
improved reliability and high sensitivity, 
as well as high dynamic ranges, are some 
of the key advantages of these assay 
formats. According to the BioPhorum 
development group bioassay point share 
(BPDG-BPS)  members surveyed, reporter 
and second messenger assays are formats 
that have been accepted by regulatory 
agencies as long as they are reflective of 
the drug candidate’s MOA.

TACTICAL DESIGN
Once the therapeutic’s MOA(s) is defined 
and the in vitro system selected, method 
development can begin. As previously 
discussed, cell-based bioassays are inher-
ently complex and variable. To control for 
this variability, a methodical, stepwise 
approach is used to design and select the 
assay type that best reflects the MOA(s) of 
the therapeutic. In this section, we discuss 
each of the components of a robust 
bioassay, beginning with selection of cell 
type and moving through assay design, 
plate selection, plate layout, plate bias, data 
analysis, and mitigation strategies. 
Bioassays evolve over time and necessitate 
the development of a method life cycle 
management strategy to ensure uninter-
rupted commercial supply for patients. 
Figure  2 outlines the recommended 
bioassay method development process. 

Selection of cell type in bioassays
The choice of cell type, cell handling and 
bioassay design will influence bioassay 
performance (e.g., robustness, accuracy, 
reproducibility, linearity, and so on). In 
addition, the transfer of a bioassay to a 
secondary testing site with less expertise 
than the developing site should also be taken 
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into consideration when deciding on the cell 
type to use and bioassay complexity.

The choice of cell type is usually between 
a primary cell typically isolated from human 
blood or tissue, and an immortalized estab-
lished cell line derived from human or 
nonhuman origin. Cell lines can also be 
modified to overexpress the receptor or 
ligand that is targeted by the therapeutic. 
Cell line choice should ideally be relevant to 
the MOAs of the therapeutic. For example, 
when constructing a reporter cell line in 
which a target receptor is transfected, the 
receptor should be of human origin to reflect 
the intermolecular interactions between the 
drug and its target.

Primary cells may be required when the 
MOA of the therapeutic agent is complex 
or multiple receptors are involved in the 
MOA and a transfected cell line cannot fully 
represent all interactions. Unless primary 
cells are absolutely required, they should be 
avoided due to considerable donor-to-donor 
variability [16]. The primary cell variability 
may be partially circumvented by freezing 
banks of cells that can be used in the 
bioassay following thawing [17].

When cells are cultured, it is important 
to monitor for changes in morphology, 
magnitude of response, half maximal 
effective concentration (ED50), doubling 
time and cell viability, among other param-
eters. Cell culture and assay performance 
should be monitored over time and a limit 
established for the allowable number of cell 
passages, before routinely starting a new 
culture.

Plate layout & the identification of bias
Microtiter plates are an essential component 
of most biochemical or cell-based bioassays. 
The setup of both binding assays and cell-
based bioassays are typically amenable to 
a 96-well plate format. This format allows 
analysts to set up assays using multichannel 
pipettes or, alternatively, automated liquid 
handling systems to prepare or add dilutions, 
add reagents, and so on. It also allows for 
the use of plate washers and plate readers 
that facilitate the performance of the assays. 
Plates with higher well count (384 and 1536) 
require automation to assist with set up and 
thus require an investment in automation 
for routine use. When automation is antici-
pated, it should be undertaken early in 
bioassay development. There may be differ-

ences between the manual and automated 
methods (e.g., dilution order, order of reagent 
addition). However, both the manual and the 
automated method should use the same 
reagents in order to allow flexibility as to 
which bioassay is implemented in a quality 
environment.

Microtiter plate assays have multiple 
potential sources of variability that can affect 
bioassay performance and thus impact the 
accuracy of results. These include varia-
tions in cell plating and cell growth rate, 
inconsistent cell response, biased results 
due to the location of the sample in assay 
plates, order of addition of standard, control 
sample(s), test samples and critical reagent, 
analyst-to-analyst, plate-to-plate and run-to-
run variability. Among these variables, the 
microtiter plate is a dominant contrib-
uting source of location-based error. For 
example, the most common plate-related 
phenomenon is the so-called ‘edge effect’, 
where the response from peripheral wells 
differs from the response observed from the 
inner wells of a microtiter plate (Figure 3). To 
minimize or protect against potential plate 
location effects, different approaches have 
been reported in the literature [18–23] and 
discussed by BPDG-BPS members. The 
most common practices include: 1) the use 

of techniques that help minimize the edge 
effect (e.g., plate hotels, heat-transfer plate 
and others, see section on plate effect); 2) 
the inclusion of replicates (wells or plates); 
3) careful consideration on the placement 
of standard, control, and test samples in the 
plate (plate layout); 4) the use of random-
ization or pseudo-randomization (row or 
column); 5) exclusion of outer rows and/or 
columns; 6) use of automation.

Plate effect

An integral part of bioassay development is 
the assessment of plate positional bias to 
help derive the final assay plate layout. To 
evaluate positional and edge effects, the two 
approaches described below may be used. 
In addition, it is important to perform these 
studies when possible using the same 
equipment and loading order (e.g., using a 
12-channel from top to bottom or 8-channel 
from left to right) used by QC during routine 
testing to capture positional effects that may 
result from loading. For one approach, a 
single drug dilution targeting the ED50 is 
loaded into all wells of multiple microtiter 
plates. Responses in the exterior wells are 
compared to those of the inside wells and 
graphed to determine the extent of the bias 
(Figure  3). Alternatively, a full dose–

MØ

NK

Figure 1. Four common biopharmaceutical mechanisms of action exhibited by monoclonal 
antibodies. (A) Inhibition of soluble ligand binding to a cell surface receptor. (B) Antibody-
dependent cell phagocytosis typically mediated by macrophages binding to the Fc region of the 
antibody and reverse signaling through FcγRIIA. (C) Inhibition of receptor–ligand interaction via 
a blocking antibody binding to the receptor and inhibiting signaling. (D) Antibody-dependent cell 
cytotoxicity mediated by NK cells interacting with the FcγRIIIA receptor on NK cells.
NK: Natural killer.
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response range can be prepared, using 
reference standard, and loaded into columns 
1–12 or rows A–H of multiple plates, 
depending on the bioassay design. If 
full-dose response curves are used, then 
these can be processed as per the method 
to establish ED50 values, averaged for all 
plates used and then compared across 
multiple plates and experiments for bias. If 
no ‘edge effect’ is observed, all wells of the 
microtiter plate may be used. If an edge 
effect is present, this bias may be addressed 
by utilizing only the inner-80 or inner-60 wells 
of the plate (Figure 3).

Although this is the most common 
approach applied, using only a portion of the 
assay plate significantly decreases sample 
throughput. To avoid this, other approaches 
(i.e., preincubation of cell-seeded plates at 
room temperature [18], use of circumfer-
ential built-in-moat microtiter plates [22], and 
others) have been reported to minimize plate 
bias or edge effect while enabling the use of 
the full microplate.

Randomization, replication & plate design

Randomization, pseudo-randomization, 
replication and plate design are also 
standard approaches that can be used to 
protect against or to minimize plate location 
and plate-to-plate bias, even in cases where 
no obvious plate positional bias exist.

Pseudo-randomization can be applied 
both within a single plate and between 
plates. Within the plate, dose replicates can 
be loaded in alternating rows or columns 
and plate location effects can be mitigated 
by ensuring that test and reference samples 
have equal exposure to the edges. At the 

same time, each plate can be designed with a 
different randomized or pseudo-randomized 
sample loading pattern to further protect 
against location effects and reduce overall 
variability [20].

The choice of the number of replicates 
may vary based on the application and 
variability of the bioassay (release, stability, 
comparability or characterization), and the 
expected throughput and precision needed. 
Usually, within a plate, at least two replicates 
per dose level are employed and, likewise, 
sometimes two or more plates are used 
to generate the sample reportable value. 
The exact number of plates used should be 
established through statistical analysis to 
achieve the desired method performance to 
support the specification. The final bioassay 
format (number of wells per dose level within 
a plate and number of plates to generate a 
sample reportable value) is often derived 
and supported by the analysis of variance 
decomposition (ANOVA of variance compo-
nents) of method validation data and/or 
control trending data, and by consulting 
with a biostatistician [20,23,24].

However, even with the most well-
designed plate layout and replication 
schemes, outliers can still occur. Setting a 
precision acceptance criterion on the repli-
cates or the use of statistical tests could 
be applied to detect outliers and support 
removal of the outlier data point or plate 
when appropriate.

Analysis of data
As a summary of the USP <1034>  [21] 
approach, calculation of the relative potency 
is based on the prerequisite that test and 

standard drug preparations behave similarly 
in the bioassay system. Consequently, the 
test and standard dose–response curves 
should share common functional parameters 
(i.e., Hill slope, upper and lower asymptotes) 
and ideally would only differ by a horizontal 
displacement, representative of a gain or loss 
of activity. If sufficient similarity (or 
parallelism as these two terms can be used 
interchangeably) cannot be demonstrated, 
then the relative potency calculation obtained 
from the two curves cannot be confidently 
interpreted as an indication of biological 
relative potency and should not be reported 
as such (Figure 4). Depending on the bioassay, 
whole (full-curve model) or partial response 
curves (e.g., linear part only when asymptote 
cannot be reached) are used in the 
assessment. However, even if a linear model 
allows sufficient assessment for lot release, 
it is recommended to assess parallelism 
using the full-curve model to support stability, 
comparability, or to qualify reference material 
or critical reagents [3]. 

Implementation of the similarity assessment: 
a 3-step process

Similarity assessment can be implemented 
in three steps:
Step 1: Select a mathematical model that 
fits the data (goodness of fit [GOF])
Step 2: Select relevant measures of similarity
Step 3: Define acceptance criteria based on 
the similarity measures

Step 1: Selection of a curve fit model (GOF)

Bioassays usually present a nonlinear 
relationship between the response and the 
analyte such as log-concentration with a 

Section 1: strategy considerations

Section 2: tactical design

Method sustainability: in vitro platform selection driven by intended MOA
(e.g., gene transcription, signal transduction, protein binding, cell based)
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Figure 2. Bioassay development considerations.  
†Qualification describes activities that demonstrate suitability of a method for use in early stages of product development while full method 
validation using a preapproved protocol with acceptance criteria is performed prior to using a method for later stages of development and 
commercialization [13,15].
MOA: Mechanism of action.
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sigmoidal shape. The model commonly used 
for curve-fitting analysis of symmetric 
sigmoidal curves is the 4-Parameter Logistic 
(4-PL) regression model described by the 
following equation:
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Where Y is the response, A is the response 
at zero analyte concentration, D is the 
response at infinite analyte concentration, 
C is the inflection point (also known as 
ED50 that corresponds to the point where 
“Y = (A + D)/2”), B is the Hill slope that defines 
the steepness of the curve and x is the 
analyte concentration.

A 4-PL function requires a sufficient 
number of concentrations or dilutions 
to fit the model (the BPDG-BPS recom-
mends a minimum of eight concentration 
points to define a 4-PL curve). At least one, 
and preferably two, concentrations are 
commonly used to define each asymptote 
(parameters A and D) and at least three, 
preferably four, concentration points in the 
linear part of the curve. The ‘linear’ region of 
a 4-PL function is often defined as concentra-
tions near the center of the response region 
where test sample input produces a direct 
linear assay signal output. Mathematically, 
the ideal Hill slope (B parameter) within the 
linear range should be around 1, meaning 
that the concentration points are spatially 
well distributed when dilutions are even and 
symmetric. However, this might be difficult to 
achieve due to intrinsic characteristics of the 
drug being evaluated (i.e., affinity of the drug 
to its target, mode of action). Therefore, a 
development objective would be to optimize 
experimental conditions and dilution scheme 
so that concentration points create a well-
defined linear range. In addition, each dose–
response curve should be made of individual 
values at each concentration point and not 
from averaged replicate values.

The validity of a given mathematical 
model as a descriptor of the concen-
tration–response relationship should be 
assessed. To achieve this, analysis of the 
residuals is recommended. Residuals are 
the differences between the observed 
response and the response predicted by 
the fitted model at a given concentration. 
If the fitted model is appropriate, residuals 

are randomly and independently distributed 
around zero. Residuals normality can be 
assessed through, for example, a residual 
plot (residuals vs concentration) or normality 
test (e.g., Shapiro-Wilk) [25].

As described earlier, the 4-PL model is 
typically employed first as it captures the 
salient features of most biological dose–
response curves. When the biological MOA 
produces a curve that is not symmetric 
around the midpoint, evaluation of an 
alternative model may be necessary, and 
typically a 5-PL model will produce a better 
fit for asymmetric curves. As such, evalu-
ating model GOF is a key piece of early 
assay development. Different approaches 
to evaluate the GOF are proposed in the 
literature [19,26]. Sum of squared errors 
(SSE) is widely used as a representation 
of GOF. This approach consists of evalu-
ating the difference between the observed 
response at a considered concentration 
and the fitted model. R2 is another way of 
evaluating GOF based on the ratio between 
sum of squares regression and total sum 
of squares. Plotting residuals against dose 

from the model would indicate whether 
there is a random deviation (suggesting that 
the model is appropriate) or a systematic 
deviation (suggesting that the model 
is not appropriate). Weighting can be 
considered, particularly if the variance of 
the response increases with magnitude. 
This approach will serve to increase 
the precision of regression parameter 
estimates by mitigating the effect of 
unequal variance [27].

Step 2: Measurement of similarity

For nonlinear models, USP <1032> proposes 
two methods for evaluating similarity: 1) 
curve parameters (i.e., slope, upper and 
lower asymptotes, and asymmetry factor 
for a 5-PL fitting model); or 2) based on a 
single composite measure (i.e., residual-
SSE [RSSE]) [28]. The majority of BPDG-BPS 
member organizations evaluate similarity 
through the ratio of curve parameters (10 
of 16 respondents), while 3 of 16 respon-
dents use a single composite measure; the 
remaining respondents use a combination 
of approaches.

 Magnified plate positional effect

R
o

w
 le

tt
er

Column count

Inner-60 wells
Inner-80 wells

A

B

C

D

E

F

G

H

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3. Potency response map of individual wells in a cell-based bioassay. Each well was set to 
target 50% (ED50) of the response in the bioassay. Samples were applied to the plate in the same 
order using the same pipetting technique as would be used in the qualified assay. The size of the 
well/circle represents the results of individual wells and was magnified to differentiate the smallest 
and largest responses. For this assay plate the boundaries of the analysis were set so the smallest 
circle represents 31.9% of the ED50 while the largest circle represents 60% of the ED50 response. This 
plate is a typical result from a multi-plate experiment.
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Evaluation of similarity based on curve parameters
The most popular way of assessing similarity 
is through the evaluation of curve parameter 
ratios (slope, upper and lower asymptotes). 
The way the curve ratio approach is applied 
differs slightly from company to company. 
The standard approach in the evaluation of 
similarity based on curve parameters is to 
consider the following three ratios:

1.

Hill slope ratio
B
B
S

T

=

2.

Lower asymptote ratio
A
A
S

T

=

3.

Upper asymptote ratio
D
D
S

T

=

Where T and S are the test sample and 
standard dose response curves, respectively, 

while A, B and D are the curve parameters 
corresponding to lower asymptote, Hill slope 
and upper asymptote, respectively.

In some cases, a higher variability with 
the lower asymptote ratio can be observed 
due to the large impact of small variations 
in the ratios of standard and test sample. To 
overcome this potential drawback, Yang et al. 
suggest not considering the lower asymptote 
alone, but together with the upper asymptote 
as the ratio of upper to lower asymptote: 

Upper to lower asymptote ratio
D A
D A

S

T
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�
�

( )
( )

[25,29]. They also recommend considering 
the ratio of standard slope at inflection point: 

Standard slope ratio
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rather than the Hill slope ratio. However, 
even if this last proposal is more accurate 
from a mathematical point of view, the 
impact of both approaches on the 

assessment of slope similarity is probably 
limited in most cases.

The main advantage of evaluating 
similarity based on curve parameters is 
the ease of implementation, as it does not 
require complex statistical tools or formulas 
and it is straightforward to interpret. 
However, it requires defining limits on each 
considered ratio and it does not consider the 
interdependence between the curve param-
eters [25,28–30].

Evaluation of similarity based on a single 
composite measure

Non-parallelism RSSE (RSSEnonPar) is a 
composite measure that considers all 
parameters (slope, upper and lower asymp-
totes) together in a single measure [27,31]. 
It is a direct measure of the level of (non)
parallelism between two dose–response 
curves and it ranges from 0 (perfect paral-
lelism) to ∞ (nonparallel). It measures the 
difference between the residual variability 
when the parameters of the two curves 
(slope and asymptotes) are constrained to 
be equal (constrained model) and the 
residual variability when the parameters 
(slope and asymptotes) are different for each 
curve (unconstrained model; Figure  5): 
(RSSEnonPar) = (RSSEConstrained) - (RSSEUncon-

strained) 
Therefore, ‘RSSEnonPar’ corresponds 

to the energy required to force two 
dose–response curves to be similar in a 
constrained model. The more energy it 
takes, the more dissimilar the curves were 
in the unconstrained model.

The RSSEnonPar criterion is not without 
drawbacks. As a composite measure, it 
can be hard to interpret. Statistically, it is 
possible for RSSEnonPar to identify nonpar-
allelism when there are no practically 
important differences in any one parameter.

In conclusion, both approaches 
(RSSEnonPar and curve parameter ratios) have 
different advantages, and both are viable 
options for parallelism assessment.

Step 3: Define acceptance criteria on the similarity 
measures

Once similarity measures are defined, an 
acceptance criterion needs to be estab-
lished to discriminate between parallel and 
nonparallel response function curves. 
Equivalence testing implies conformance 
to an interval acceptance criterion and is 

%RP = ED50STD
/ED50Test

 × 100
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Ideal situation where dose–response curves
share similar parameters. ED50 is influenced
by the horizontal shift only.

The horizontal shift is not constant across the 
dose–response relationship and ED50 is
consequently not representative of the bioactivity.

ED50 is influenced because of the difference between the upper (C) or lower (D) asymptotes and
not because of the horizonal shift only (half of the effect is represented by the horizontal red line).

Figure 4. Relative potency should only be considered if similarity between the considered dose–
response curves is demonstrated. (A) Ideal situation where dose–response curves are well 
defined and share similar parameters (upper/lower asymptotes and slope). Relative potency is 
then influenced by the horizontal shift between the two curves and calculated as the ratio between 
the two inflection points (ED50). (B–D) Unsuitable situations where parameters are dissimilar 
and parallelism is not met, meaning that the distance between Hill slopes (B), upper asymptotes 
(C), and lower asymptotes (D) is outside a predefined acceptance range. Consequently, relative 
potency is not solely a reflection of the horizontal displacement between the two curves. Therefore, 
calculating relative potency as the ratio between the two inflection points is not appropriate.
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one statistical test that does not penalize 
results that are too precise  [28,32,33]. 
Fleetwood et al. highlighted the importance 
of the size of the historical dataset used to 
define reliable equivalence limits [34]. While 
a dataset of at least 100 assays is proposed 
by Fleetwood et al., a more general recom-
mendation would be to have a phase-appro-
priate dataset size. In addition, parameters 
for similarity testing can be established and 
re-established as the assay is developed 
and used. The BPDG-BPS ideally recom-
mends periodically reassessing the equiv-
alence limits.

Relative potency calculation

Once curve similarity is demonstrated, 
the relative potency of the test sample 
can be calculated. The choice between 
the constrained or unconstrained model 
could be based on qualification data 
(qualification meaning ‘early-phase 
validation’). The BPDG-BPS recommends 
analyzing repeatability and linearity data 
derived from the qualification set through 
constrained and unconstrained models 
to determine which of the two models 
best fit the data. In cases where there is 
little difference in the performance of the 
two methods, companies are justified in 
adopting either approach. Under standard 
statistical assumptions, constrained 
fitting produces less variable estimates. 
However, deviation from these assump-
tions could subject constrained fitting to 
unpredictable biases which uncon-
strained fits avoid. The ideal approach 
would exhibit no systematic bias and low 
variability of the relative potency 
estimates.

For calculation of the relative potency 
using only the linear range, a linear 
regression with a common slope and x-inter-
cepts is fitted on the linear range selected 
from the 4-PL curve of each standard and 
test sample. The relative potency (RP; in %) 
is computed as:

RP antilog
A A

B
T S� �
��

�
�

�

�
�100

Where AT is the test x-intercept, As is the 
standard x-intercept and B is the common 
slope.

In a full-curve model, for each pair of 
standard and test samples the RP (%) is 
computed as:
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Where ED50S and ED50T are the ED50 param-
eters of the standard sample and of the test 
sample, respectively.

The reportable value is then calculated 
as the arithmetic mean or geometric mean 
(taking into consideration the geometric 
distribution of the relative potency value) 
from the corresponding sample replicates.

System & sample suitability 
considerations
Design & application of system & sample 
suitability criteria

Prior to calculating the potency of a test 
article, an assessment of the assay perfor-
mance should be conducted. System and 
sample suitability criteria are a panel of 
assay performance criteria, established 
during assay development and confirmed 
during assay validation, to ensure the assay 
was in a controlled state during the testing. 
System and sample suitability are applied 
individually to each plate, and each test 
article on the plate. Initially described in ICH 
Q2(R1), system suitability is intended to 
control for variability by implementing 
criteria specific to each analytical 
procedure [19]. Guidance was updated in 
USP <1032> to capture bioassay-specific 
information on system and sample suitability 
criteria, reflecting the advances in bioassay 
development and testing across the 
industry [28]. It is expected that system and 
sample suitability criteria will evolve 
alongside the maturing assay.

Multiple factors influence the choice 
of system and sample suitability criteria 

(assay design, molecule MOA, technology 
platform, life-cycle stage, availability of 
reagents, presence of a control sample, 
and so on). System suitability criteria 
typically characterize the quality of 
reference standard and control sample 
curves (e.g.,  GOF), proper functioning 
of the bioassay system (e.g., max to min 
ratio) and/or measurement of variance 
in the bioassay run (Table 1). Conversely, 
sample suitability criteria compare the 
performance of the sample to the perfor-
mance of the reference standard (e.g., curve 
parameter ratios). If these criteria are not 
met, no further calculations are performed, 
and the sample and/or assay is considered 
invalid and must be repeated [35].

During early development, small data 
sets make generating statistically derived 
values for initial system and sample 
suitability criteria challenging. As such, 
using a predictive statistical method that 
addresses the uncertainty associated with 
small data sets such as tolerance intervals is 
appropriate [36]. This approach can prevent 
unduly stringent initial criteria. Over time as 
data sets expand, they may support poten-
tially more stringent criteria, at which point 
they can appropriately be evaluated using 
confidence intervals. In addition to the tight-
ening of criteria, it may become beneficial to 
remove criteria that are no longer indicative 
of critical assay parameters, or add criteria 
whose need becomes apparent due to greater 
variations seen in the expanded data sets [19].

Signal-to-noise ratio is also usually 
evaluated as an indicator of assay perfor-
mance. A general recommendation is to have 
a development objective set for the minimum 
signal-to-noise ratio that would ensure better 
control on assay accuracy and precision.
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Figure 5. Model used for the calculation of non-parallelism residual sum of squared errors 
(RSSEnonPar). (A) Unconstrained model (full, unrestricted: fit independent 4-PL curves to the dose–
response data). (B) Constrained model (reduced, restricted: fit 4-PL curves having common A, D and 
B parameters) [31].
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Management of outliers
Outlier evaluation methodology is detailed 
in USP <1032> as part of bioassay devel-
opment and is used to varying degrees by 
the BPDG-BPS member organizations. 
Visual outlier inspection as an initial identi-
fication tool must be supplemented with an 
objective statistically derived approach to 
avoid bias. Commonly used statistical tools 
may include Grubbs or Dixon’s Q tests, as 
well as replication- or model-based 
approaches [28,37].

A replication-based approach can 
be used when multiple replicates are 
performed at concentrations of test and 
standard preparations. To identify outliers, 
an additional variability criterion can be 
defined (i.e., %CV or ED50 range) based on 
the observed variability among replicates 
in a historical dataset.

A model-based approach uses the 
residuals from the fit of an appropriate model 
to identify outliers. Example decision criteria 
for outlier detection and removal could 
include internally studentized residuals and 
z-scores [38].

Within BPDG-BPS member organiza-
tions, the majority, nine of 16 respondents, 
have clearly defined outlier removal strat-

egies for sample and/or dose–response 
curves. Although there was no consensus 
as to the best outlier methodology, Grubbs 
test was the most popular (six of 14 respon-
dents), and regardless of approach, members 
overwhelmingly agreed that consistent, 
non-subjective, application was key for a 
robust outlier strategy (14 of 16 respondents).

Removal of outlier points does have an 
impact on influencing the confidence of a 
reportable value, especially given a limited 
number of replicate data points. A general 
recommendation would be to define an 
acceptable minimum number of replicates 
used to compute the reportable value. This 
minimum number of replicates could be 
supported by a variance decomposition 
analysis performed on validation data, 
computing the expected %CV of reportable 
values obtained from different replicate 
numbers.

Monitoring bioassay performance
Incorporation of controls

General assay controls (e.g., blanks, positive/
negative controls) are used to ensure the 
method was properly executed and 
performing as intended. Within the 
BPDG-BPS members, 13 of 16 respondents 

incorporate an internal control in their 
bioassays at some point during devel-
opment. The internal control is either an 
independent batch of material, or reference 
material having a known activity, which is 
run as a test sample and monitors perfor-
mance of the assay. The internal control has 
specific acceptance criteria assigned to 
further evaluate whether the bioassay is 
technically valid and if the test sample 
results should be reported. Exactly how this 
process is executed varied among the 
BPDG-BPS members. While not universal, 
most members do employ an internal control 
despite the challenges of maintaining this 
critical reagent in terms of cost, documen-
tation, plate occupancy and assay 
throughput.

In some cases, members who do not 
use an internal control (three of 16) use 
alternative control strategies to ensure 
adequate performance of their bioassays, 
for example, reference material ED50 
tracking and failure mode and effects 
analysis. In addition to the selection of 
an internal control, there are differences 
in the timing of implementation (phase of 
product development) and specific system 
suitability criteria applied.

Table 1. Examples of system, control, and sample suitability criteria.

Criteria System suitability Control suitability Sample suitability

Statistical evaluation of fit† X X X

%CV of ED50 standard values‡ X X  

ED50 range§ X X  

Max/min ratio¶ X    

Measure of similarity between standard and test sample (curve 
parameter ratios analyzed independently or in combination# and/
or single composite measure; e.g., RSSEnonPar)

  X X

Measure of replicate variability††   X X

†Goodness of fit test by comparing curves, which typically relies on a database of historical assay data to establish the acceptance parameters 
(e.g., R2/residual sum of squares/root mean square).
‡Relevant for Standard and control when run on same plate since standard and control are well-characterized samples. Below a certain %CV 
ED50 ensures proper functioning of bioassay system.
§ED50 applies to assay control and standard, and the need for the result to fall within a statistically-derived bioassay control range. This parameter 
is only used when the assay has demonstrated a highly consistent ED50 and is useful when only one control or standard curve is run on a plate.
¶Ensures assay system is functioning and responding properly. It has the ability to indicate contamination, incorrect dilutions or cell numbers.
#Ensure standard and test sample dose–response curves share similar parameters using an equivalence approach. Curve parameters can be 
evaluated independently (e.g., ratio of slope, ratio of upper asymptote, ratio of lower asymptote or ratio of upper to lower asymptote).
††Bioassay reportable values are typically made of multiple replicates. Due to space constraints on a single plate more 
than one plate may be required. Placing limits on acceptable variability (e.g.,  %CV, CI) between replicate series allows 
confidence in the data to be controlled and ability to generate a potency value reflecting the true state of the sample. 
RSSEnonPar: Non-parallelism residual sum of squared errors. 
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Those using internal controls are 
typically required to do so for each assay 
plate. If using an independent lot, the 
material selected to serve as an internal 
control sample should be suitable and 
able to demonstrate an acceptable level 
of accuracy and precision versus the 
reference standard. The internal control 
sample should be tested with a full dose–
response curve consistent with the 
reference standard and test samples, as well 
as using a similar sample dilution format, 
unless there are key drivers for imple-
menting an alternative approach (e.g., test 
samples are not analyzed with a full dose–
response curve). Within the BPDG-BPS, 10 
of the 17 respondents that implement an 
internal control do so during earlier phases 
of bioassay testing, regulatory toxicology 
through to Phase I clinical batch testing. 
Five of the 17 respondents implement use of 
an internal control sample at a later stage of 
development or bioassay testing (Phase II/
III clinical batch testing), and two of the 17 
do not implement until the commercial 
testing stage. The majority of the BPDG-BPS 
members see an advantage to imple-
menting a suitable internal control in their 
bioassay testing as early as feasible and by 
late-stage clinical development (Phase III) 
or commercial. It is common to implement 
the internal control program prior to method 
validation; however, some companies use 
validation data to set internal control accep-
tance ranges and in this case implement the 
internal control post validation.

According to the BPDG-BPS members 
surveyed, selection of material for a bioassay 
control sample varies. For those BPDG-BPS 
companies where the internal control 
sample is derived from a batch independent 
of the reference material, it typically comes 
from a batch produced and formulated 
similar to the reference material and may 
be at a similar concentration, to avoid bias 
from variable dilution practices. Whether 
derived from the reference or an independent 
lot, the internal control receives identical 
treatment to the test sample(s) being 
analyzed. Both approaches are common 
and require monitoring (e.g., curve param-
eters and other attributes) to determine the 
stability of the material. While there is no 
single acceptable path for how to select a 
material for the internal control sample, it is 
important to select an appropriate material 

for the development stage and incorporate 
in bioassay testing with acceptance criteria 
for run suitability evaluation.

Regardless of the material used, specific, 
numerical assay acceptance criteria should 
be defined for the control sample, which 
when applied can help guide determination 
of the conformity of an assay and if a result 
can be considered or not. The acceptance 
criteria range for an internal control attribute 
monitored during early stages of devel-
opment, when experience with the bioassay 
is limited, will typically be set fairly wide. This 
range will narrow over time with experience 
gained and additional method optimization 
performed.

Trending of key assay parameters

Once the initial stages of bioassay devel-
opment are complete, monitoring key assay 
performance parameters with a chronolog-
ically ordered trend chart can provide 
valuable insight into assay functioning. 
Bioassay monitoring may point out drift, 
indicate unexpected results due to instability 
of critical reagents, or when used in 
conjunction with an assay control sample, 
identify influences from formulation excip-
ients and matrix effects. Suitable assay 
parameters to track can include those 
derived from the 4-PL curves such as upper 
and lower asymptote, ED50 and reportable 
results, as well as the Max/Min signal ratio 
and R2. Tracking these indicators can bring 
an additional level of understanding to the 
bioassay development process.

DISCUSSION
Bioassays are an essential part of devel-
oping biopharmaceutical drugs and are used 
to determine potency, stability and compa-
rability between different processes. The 
development and implementation of a 
bioassay can be complicated and, therefore, 
the concept of a white paper focused on the 
common practices in bioassay development 
evolved from the 22 BPDG-BPS biopharma-
ceutical member companies. These 
companies represent a wide perspective of 
current bioassay development in the 
biopharmaceutical industry. Therefore, the 
idea of capturing a condensed and harmo-
nized view on the common challenges and 
best practices in bioassay development 
covering both strategic and tactical aspects 
came to fruition.

The bioassay design is directly influenced 
by the drug’s structure and the stage of 
development. In addition, it should balance 
the inherent variability linked to the use of 
biological material and the reliability require-
ments of a quality control environment. If 
the drug is determined to have multiple 
MOAs, it is acknowledged that each of the 
MOAs should be monitored with one or more 
methods. To support the characterization 
of MOAs, innovative bioassay formats 
(e.g.,  reporter and second messenger 
assays) have emerged as robust bioassay 
design options.

FUTURE PERSPECTIVE
The aim of this paper was to align regulatory 
expectations with best industrial practices 
in bioassay design. From the BPDG-BPS 
discussions while writing this manuscript, 
specific points emerged that need additional 
consideration. The first point was related to 
specification range setting. It is proposed 
that bioassay product specifications should 
be defined according to the clinical stage of 
development, starting with a reasonably 
broad range, but with an expectation of tight-
ening the specifications after a sufficient 
number of representative drug batches are 
available. Therefore, bioassay development 
should focus on characterizing and 
minimizing variability. The second point 
highlighted was related to the analytical data 
required to justify use of a binding assay 
versus a cell-based bioassay as the primary 
potency release test. While there was no 
clear consensus on the minimum 
requirement to support the binding assay 
over the cell-based assay, several aspects 
were considered, including how the binding 
assay reflects on the drug’s MOA(s), how the 
bioassay reflects on stability indicating 
conditions, and how the bioassay differen-
tiates between different product degradants.

We must recognize the effort being 
made by regulators to stimulate discussion 
and idea exchange through workshops 
and conferences. There will certainly be 
evolution in the potency bioassay field over 
the next 5–10 years as companies bring 
more complex biotherapeutic modalities 
into clinical development such as bispe-
cific antibodies and gene and cell therapies. 
New technologies and bioassay platforms 
are available to enable the development 
of MOA-reflective, robust bioassays to 
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support potency assessment throughout 
clinical development and commercialization. 
We are at the beginning of the journey and 
each question stimulates a new question, 
which promises an exciting future and new 
directions to come.
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