9,093 research outputs found

    Early space experiments in materials processing

    Get PDF
    A comprehensive survey of the flight experiments conducted in conjunction with the United States Materials Processing in Space Program is presented. Also included are a brief description of the conditions prevailing in an orbiting spacecraft and the research implications provided by this unique environment. What was done and what was learned are summarized in order to serve as a background for future experiments. It is assumed that the reader has some knowledge of the physical sciences but no background in spaceflight experimentation or in the materials science per se

    Dynamics and column densities of small particles ejected from spacecraft

    Get PDF
    Trajectories and relative motions of small particles ejected from a spacecraft were analyzed, and modifications to the clearing times and column densities because of orbital dynamics were assessed. It was found that despite the fact that such particles are confined by orbital dynamics to move along similar trajectories with the spacecraft rather than to continue their free expansion, the effect is negligible for viewing angles away from the orbital path. Small particles are rapidly swept away by drag and will not contribute significantly to the column density when viewing along the velocity vector in 420-km earth orbit. However, substantial increases in column density can results when viewing in a direction opposite to the velocity vector because of drag effects. In the absence of drag, significant column densities can build up both in front of and behind the spacecraft in earth orbit for particles released at a few meters per second. This effect is much less pronounced in lunar orbit because the same release velocity produces a larger orbital perturbation for the particle

    Materials processing in space: Early experiments

    Get PDF
    The characteristics of the space environment were reviewed. Potential applications of space processing are discussed and include metallurgical processing, and processing of semiconductor materials. The behavior of fluid in low gravity is described. The evolution of apparatus for materials processing in space was reviewed

    Mass influx obtained from low-light-level television observations of faint meteors

    Get PDF
    Low light level television systems offer the ability to observe meteors as faint as 10th magnitude which allows the extension of optical meteor data to masses as small as 0.0001 gram. The results of these observations, using image orthicons and intensified vidicons, are presented along with an interpretation in terms of mass flux. This interpretation includes the development of a relationship between peak luminosity of a meteor and mass, velocity, and zenith angle that was derived from single body meteor theory and compares favorably with results obtained from the artificial meteor program. Also included in the mass flux interpretation is an analysis of the observation response of a LLLTV system to fixed and moving point sources

    Preliminary assessment of the vacuum environment in the wake of large space vehicles

    Get PDF
    The vacuum environment in the wake region of presently planned large space vehicles is calculated using simplified models of the particle fluxes from the various sources. The fluxes which are calculated come directly from the ambient, are due to ambient particles backscattered from spacecraft emissions, and are due to self scattering of spacecraft emissions. Using nominal values for the surface emissions, the flux density environment behind a large unmanned craft at 550 km altitude is calculated. Calculations indicate that the flux density on a wake vacuum experiment conducted in the vicinity of the shuttle is substantially greater than that behind unmanned craft

    Qualitätsabstufungen und Leistungswettbewerb zwischen Fachbereichen: Objektive Gegebenheiten und subjektive Bewertungen

    Get PDF

    Theory of Ostwald ripening in a two-component system

    Get PDF
    When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method
    corecore