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DYNAMICS AND COLUMN DENSITIES OF SMALL PARTICLES
EJECTED FROM SPACECRAFT

INTRODUCTION

Small particles are often generated by a spacecraft in flight and can interfere with
intended operations in a number of ways. One of the primary areas of concern is the
light scattered from such particles. Of secondary concern is the molecular material
sublimating from them. To calculate these effects it is necessary to know the column
density.

The column density depends on the source rate and the velocity. To a first order
approximation the velocity may be taken as the initial velocity of separation between the

particle and the spacecraft. However, this velocity can be modified significantly by orbital

dynamic and drag forces. These effects are computed in this study.

ANALYSIS

Consider the satellite in a circular orbit with velocity ve . Let the particle be

ejected with a velocity 6v making angle y with the velocity vector and T with the

radius vector. Define the x-axis to be along the velocity vector, the y-axis to be along the

radius vector, and the z-axis to be opposite the orbital angular momentum. The

components of 5v are

cos "y

5v 16v cos T (1)

1 -cos
2 - COS

2

The particle will have a change in orbital inclination given by 6i= 6v/v o and will

oscillate about the z direction according to

6z = r sin 0 6i (2)

where r is the radius vector and 0 is the angle traveled from the release point.



By defining a quantity

S= V 2 / V 2 - 1

where

v = Iv + svi

6vX 5v 2
e = 2- + - (3)

The semimajor axis a and eccentricity e of the particle orbit are

2  1 - (2 CO) cos2 (4)
v0 2 v

and

re

a = 2 - v2 /v o2  (5)

where 6 is the dispersion angle or 6 = 6 Vy/Vo . In terms of e,

e2 = -(1- 2 )(1 - y/vo) (6)

= e 2 
+ V +

2



and

a r (7)
1-E

Hereafter the subscript o refers to the spacecraft.

The mean anomaly Mo at the point of release is obtained by requiring the radius

vector r to equal r . Using the relation between radius vector and eccentric

anomaly E and equation (7),

re/a = 1- e cos Eo = 1 - e

from which

Eo = + cos" (e/e) (8)

where Eo is the eccentric anomaly at the time of release.

The sign ambiguity introduced by the arc cos may be resolved by

taking Eo positive if the particle is projected in the direction of the radius vector

(0 < -y <180 deg) and negative otherwise.

The mean anomaly M o is found from the relation

Mo = Eo - e sin Eo (9)

The mean anomaly may be expressed as a function of time by

2rrt
M = Mo + (10)

T

where T is the period. This period is related to the spacecraft period by

T = T(a/r)/2 = T( 1 +-e +.. (11)
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The mean anomaly of the spacecraft relative to the particle perigee is just the true
anomaly vo of the particle at the time of release. This is found by requiring

I - e2  re
- - 1 - e 

(12)i + e cos vo  a

or

Vo = cos- e (13)e(1 - e)

The same resolution of the sign ambiguity stated for Eo applies here.

The mean anomaly for the spacecraft is given as a function of time as

2nt
MO = vo + To (14)

The position of the particle relative to the spacecraft in a space-fixed coordinate system
with x' in the direction of the particle perigee is given by

6 x' 1 1 1
- os M + -e (cos 2M - 3) + -e 2 (3 cos3M-3 cosM) +

r. 1 - e 2 8

- cos M(15)

6 y' 1 1 1- sin M + - e sin 2M + e (9 sin 3M- 15 sin M) +rE 1 -2 24

- sin M.
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These may be expressed in a rotating coordinate system such that x is in the direction

of the spacecraft velocity and y is along the radius vector by rotating the system

through angle Mo .

The drag on the particles is treated by allowing the semimajor axis to vary

according to

a E (16)
a E

where E is the energy of the orbit. From the Virial Theorem,

2(KE) = -(PE) (17)

where the bracket terms are the time-averaged kinetic and potential energies. Therefore,

the energy of the orbit is

E -m(v 2 ) (18)
2

The rate of energy loss caused by drag is

E = -Fv = -CD APa v 3  (19)

where CD is the drag coefficient which is the order of unity, A is the frontal area,

and Pa is the atmospheric density.

For nearly circular orbits the velocity is almost constant so that the difference

between the average velocity and the rms velocity is negligible. Therefore,

a 2 CD APav (20)

a m

It is useful to express the change in a in terms of the fraction change per orbit,

or
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da
S= aT (21)dn

where the period T is

2 ira
T =- (22)

Therefore,

da 4 7r CD A Pa a 2

dn m (23)

where n is the revolution number. This has the form

da
- - k a2

dn (24)

Integrating with the boundary condition a = ao at n = 0,

1 1
- - - kn

a, ao (25)

or

a + a kn ao (1 - ao k n)

Assuming the particles are uniform ice spheres, CD = 1 , ao = 6.798 X 106 , and

Pa = 4. 8 2 X10 - 1 2 kg/m3 (at 420 km),
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4 7r CD A paao 6.15 X 10-7 (27)

ao k (27)
ao k = m d (m)

where d(m) is the particle diameter in meters. Finally, equation (15) becomes

6x' 1-aokn r1S - c k n os M + - e (cos 2M - 3)
ro  1 - E 2

+ 1 e2 (3 cos 3M - 3 cos M) + . . . - cos M (28)
8

6 y' I - ao kn sin M + -e sin 2M
ro  1 -C 2

+ -- e2 (9 sin 3M- 15 sin M) +.. -sin M
24

where a0 k is given by equation (27), and n is the time in orbital periods.

To find the distance the particle has moved in one orbit, replace M by M + 2 7r
3

and M. by Mo+2 rrT/T = M + 2 r( + - e + ...) in equation (15) and subtract the

original equation. This yields

6 x' = a[cos M (1 - cos 3 )-sin M o sin 3 r e]

(29)

6 x' = a[sinM o (i -cos3 7re)-cos M sin3 7r e]

Since e << 1, (1 - cos37re) involves only second order terms which may be neglected. The

distance traveled in one orbit AS becomes

AS - (6 x' 2 +6 y2 ) a sin 3 rreI 3 rrea . (30)
An
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Under the influence of drag, a changes by a = ao (1 - ao kn) and e changes by
e = co - ao kn. Both eo and a0 kn << 1 . Ignoring terms of higher than first order,

AS
A- 3 r ao (co - ao k n) I (31)
An

Integrating, the average separation as a function of time is given by

- e t ao k t 2
S = 3 7r ao  +-.. (32)

where

r.
ao

1 - eo

eo = 2 - cos, +

and T is the orbital period of the particles. Actually, this changes also with a, but the
difference is only in terms higher than first order.

RESULTS

Typical trajectories in the rotating coordinate system are shown in Figures 1
through 3. Figure 1 shows particle trajectories for an ejection velocity
of 6v = 0.001 v. at various angles and no drag. It is interesting to note that particles
ejected along the velocity vector pass above the spacecraft and move to the rear, while
the opposite is true for those ejected to the rear. This can be easily understood from the
fact that addition of velocity raises the orbit and increases the period; therefore, the
spacecraft will pass under and ahead of the particle.

Particles ejected at 90 deg and 270 deg have approximately the same period and
will, therefore, almost reencounter the spacecraft one orbit later. Also, note the fact that
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trajectories have a mirror symmetry; i.e., the 225-deg trajectory is the mirror image of

the 45-deg trajectory.

Figure 2 shows a family of trajectories for an ejection velocity

of 6v = 0.0005 v. and no drag. Trajectories for angles 180 deg <y <360 deg were

deleted for clarity since they are mirror images of those shown. The epicycles can be seen

for the 7 = 60 deg and 120 deg case. Figure 3 is the same case as shown in Figure 2

except that the scale is smaller. The tendency for the particles to spread out along the

orbit is seen. In the direction of the velocity, the particles tend to stay below the flight

path, while the opposite is true in the negative velocity direction.

Figure 4 is a plot of the radial distance between the spacecraft and the particle as

a function of time. For comparison, the trajectory corresponding to initial ejection

velocity is shown. It may be seen that particles leave with this velocity and that clearing

rates may either be enhanced or retarded by the orbital dynamics. The 45- to 225-deg

trajectory provides the fastest initial separation. A similar set of curves plotted over

several orbits is shown in Figure 5.

The effect of drag is the decrease of the semimajor axis. This will ultimately cause

the particle to move ahead of and below the spacecraft. Figure 6 shows the trajectories

of particles ranging from 100 pm to 1 cm ejected at y = 60 deg with a velocity

of 6 v = 0.001 v. The 100-Mm particle turns and is rapidly swept away. The 1-mm

particle first proceeds opposite to the velocity, makes several loops, and then rapidly

moves in front of and away from the spacecraft. The 1-cm particle moves similarly to the

drag-free case. It is being retarded and will ultimately reverse direction and pass below

and in front of the spacecraft.

Figure 7 is identical to Figure 4 except that drag for a 100-pm particle is

considered. Now the symmetry is destroyed and the 225-deg ejection angle results in very

rapid clearing. The 135-deg case has a slower initial clearing rate and the 45- and 315-deg

cases delay the rapid acceleration from the drag until almost one orbital period.

Therefore, if overboard dumps are required, there is some advantage to projecting the

material toward the rear and down.

Figure 8 shows the separation rates for 100-gm, 1-mm, and 1-cm particles for

different values of y . Note that clearing is always more rapid for particles thrown to the

rear of the spacecraft.

COLUMN DENSITIES

The ultimate use of this study is to compute densities in a column along some

line of sight. To do this properly, the contribution from a given source must be obtained
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by following the trajectory of each particle and the probability of the particle being
found in the specified column obtained. This can be done by Monte Carlo techniques.
However, for more general estimates simplified models will be used.

First assume a free expansion model in which particles are emitted uniformly
from the surface of a sphere with radius Ro and radial velocity 6vr . The number
density is just

NT
N(R) = 4 r RO2 6 v (33)

where NT is the total emission rate (particles per unit time). The column density is

found by integrating along a column,

00NT

nc = N(R) dR = (34)
Ro 4 r R o 6 vr

This model applies if the 6 vr is large enough so that the particles disperse to an

undetectable concentration in less than one orbit. However, because of the orbital
motion, the particles do not expand indefinitely but are confined to a tube about the
orbit.

For an order of magnitude estimate, assume that all the particles leaving the
spacecraft are uniformly distributed in cross sector in a circular tube with radius and
whose length is increasing with time at the rate S along the orbit.

The y-component of particle oscillation is given by

y ae (6vx2 6 2 )

r 2 + 2 +  . . (35)ro  r vo  ve

and the tangential amplitude is

8 vz
(36)
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The resultant amplitude is

= ((2 z2) = (4 6vx2 + 6v 2 + 6VZ2)/2 (37)

6 v )/

Note that t varies only by a factor of 2 over the entire range of y. For the

accuracy required here, it is sufficient to ignore the y dependence and set

6v (38)
r

The number density contribution from particles inserted at angle 'y anywhere in

the tube is given by the number inserted during the interval At divided by the volume of

a length of the tube equal to SAt, or

AN (7) (7) (39)
7rt 2 SAt ir 2 S

where S is given by

1 AS 3 r ao kt (S - eo - o + (40)
T An T T

In terms of S, this becomes

S= ISo 2 + 2So I (41)

11



where

3 r ao co 3 7r ao2 k
So and S0 = 2

T T2

The positive sign which decreases the column density applies to particles moving ahead of
the spacecraft, i.e., those ejected to the rear with y > 7r/2 resulting in e < 0.

The column density may be calculated by integrating rq(S) along the sight vector.
Let the sight vector make angle j with the orbital path. The contribution from particles
released with angle y to the column density is

$I 
dsfnc = (S)

0 cos 4

N (y) $ ds
S t2 C(42)rn 2 COS 0 [So 2 o S] 2

So may be expressed in terms of y . From equations (30) and (3),

o - 2 cos '+ -v (43)
T ve vo

or, using the fact that T = 2rro/ve ,

3 6v
o = - - 6 v(2 cosy + - . (44)2 ve

The sign was lost in the derivation when extracting the root; however, it is clear
that particles ejected with -y < 7r/2 will move behind the spacecraft, whereas y > r/2

12



results in positive velocities. Some care is required to insure the proper sign in equation

(42). For 4 < r/2 , particles ejected with y > 7r/2 will be seen directly, and they will be
accelerated by drag. Therefore for 4 < 7r/2 ,

ir/2 S1

/ & (y) dy j dsnc= f ' f (45)
o0 i 2 dos O [So2 + 2 So S] (45)

where Si is the distance at which the line of sight intersects the tube containing the
particles. This is

f cot 4'

S, = whichever less. (46)

Particles ejected with -y < 7r/2 will initially move opposite to the velocity vector.
They will be retarded by drag and will ultimately turn and be accelerated along the
velocity vector. When they pass the spacecraft, from equation (41), it may be seen that
their separation velocity will be equal in magnitude to S0 , but they will be moving in the
opposite direction. From this point on they will behave just like particles ejected
at 7r/2 - y. Therefore, the total column density for 4 < ir/2 will be twice the integral of
equation (45) over 0 < y< r/2.

For 4> 7r/2 , the situation is somewhat more complicated. There will be no
contribution from particles ejected with y -> 7r/2 since they will drift in front of the
spacecraft.' For -y < 7r/2 , the particles will drift to the rear. The effect of drag is initially
to slow the particles, which requires that the terms in the denominator are subtractive.
This will come about naturally since S will be negative. The limit S, will be that
specified in equation (46) with opposite sign, or the turning point of the particle,
S = -S2 /2S o , whichever occurs first. The returning particles will give a contribution
equal to those going away. Therefore, the total will be twice the amount found by
integrating equation (45) from 0 < y < 7r/2.

1. Particles ejected with y > 7r/2 will, of course, initially pass through the field of view
as they make their initial loop around the spacecraft, but the long-term motion is being
considered here.
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Integrating equation (45) once yields

1r/2 N (y) dy 2  (o2 + o S) V2 - I So I] (47)
nc --2 f cos S Po

For iJ< 7r/2, the above holds for all ' . If the spacecraft is emitting particles isotropically

at a rate NT/ 4 7r particles/sec/steradian, the number density can be found by

replacing NI(y) by NTd92/ 4 r or '/2NTsin'y, multiplying by 2 and integrating

fronm 0 < -y< rr/2 . This results in

n NT v 1(2 + 6v/v 0 )2 (A, - 1) + (A2 -1)
c 4 7 2 COS / go VS

4 o S (2 + v/v) ( + A
+ In ](48)

9 6v 2  6v/v, (1 + A)

where

4 So S1
A, 1 + 9 6v 2 (2 + v/vo 2

and

4 So S 1/2

A2 + 9 v2 6v 2 /v0
2

For p] > r/2 , the above holds for particles that do not turn before - S, , or for
which

So2 cos /
whichever greater. (49)

2 So -

14



For particles that turn before they move out of the viewing column, S, must be replaced

by -S 2 /2S 0 in equation (47). This applies to all particles for which

So2 < 2So 0 I cot I (50)

or for which

3 7r [2 cos7y 6v/v, + (6v/v 0 )2 ] 2

re 2 6v/v o I cot I (51)

At Skylab heights (420 km) the drag term rk for a spherical particle with

density of 1 gm/cm3 is 0.615/d (Mm) where d(gm) is the diameter in microns. This

means that all particles smaller than

0.615 2 6v/v o  I cot I

3 i7 [2 6v/ve cos 'y + (6v/v,) 2] (52)

will turn before they move out of the viewing column. For y = 0 and

6v/v o = 0.001 (7.8 m/sec),

d(pm) < 32.6 1 cot 'I

Therefore, integrating equation (47) with S, = -So 2 /2S o applies to all cases for which

the viewing angle is greater than 4 > cot-' [-d(,m)/32.6]. For 100-Gm particles, this

restricts Pmin to greater than 162 deg. For 10-aym particles, 'min is only restricted to

greater than 107 deg. Integrating equation (47) for 4 > Omin and doubling to account

for the particles after they turn yields

3V NT Sv r 6v 1
nc 2 r 2 cos S 1 + -v (53)

c 2 t2 COS S v15

15



The intermediate cases, 7r/2 < I < 4 min, must be treated by integrating equation
(47) from 0 to y, with S, given by coto and from y, to ir/2 with S1 = -S0

2 /2So
where y, is the value for which equation (52) is an equality.

The column densities for a spacecraft emitting particles isotropically are plotted as
a function of velocity in Figures 9, 10, and 11 for look angles = 0,r/2 ,and 7i. The
column densities. are normalized by the column density that would result in the absence
of orbital and drag effects, equation (30). The drag-free case is obtained by taking
the lim as S0 -+ 0 of equation (47). This yields

NT Si 12 + 6v/v\
n In (54)c 6 ir 2 cos 6v 6v/v (54)

For the 0 = 0 case, it may be seen that orbital effects on the column density are
not important unless 6v < 4 m/sec. For small particles which produce the highest
scattering efficiency, drag effects rapidly clear the particles even if their initial velocity is
low. The fact that at high ejection velocities the column density from small particles
exceeds the no-drag case is because of the factor of two resulting from the drag
eventually causing all particles to move into the field of view.

For the i = rr/2 case, the orbital effects are negligible for all particles with
velocities more than a few tens of centimeters per second. With drag effects, the smaller
particles are accelerated out of the field of view so rapidly that they do not contribute to
the column density regardless of their initial velocity.

For the direction = nr the effect of drag is to greatly increase the column
density, particularly for the larger particles. This is because of the increased number
density brought about by the particle's low velocity in the vicinity of the turning point.
Equation (53) is restricted to values of 6v small enough to cause all particles to turn
before v/J . These velocities are indicated by the termination of the plotted lines.
As 8v is made large, these curves will approach a value of twice the drag-free case.

Finally, Figure 12 shows the relative column density for the Apollo in lunar orbit.
It was assumed that the Apollo was an isotropic source with an effective radius of 2 m.
Shown for comparison is the 4 = 0, 90 deg no-drag cases for Skylab in a 420-km earth
orbit. Note that in lunar orbit, orbital effects are not significant for ejection velocities
more than 0.56 m/sec.
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SUMMARY

The effects of orbital dynamics and drag on small particles released from
spacecraft in circular orbits have been calculated. It is shown that such particles will
become distributed along the orbital path and that the net separation rate between the
particle and the spacecraft is given by

S 3 v 6v 2 2 CD A pa vo t
S = 2 - cos7 +  - -

2 ve\ve m

where vo is orbital velocity, 6v is ejection velocity, y is the angle of ejection relative

to the orbital velocity vector, CD is the drag coefficient, A/rn is the area to mass ratio

of the particle, Pa is the atmospheric density, and t is the time after ejection. Particles

ejected randomly will be confined by orbital dynamics to a tube of cross sectional area

given approximately by 7r 
2 where ( = ro 6v/ve and r. is the orbit radius vector.

The column densities resulting from a continuous isotropic release of particles in

circular orbit from the Skylab were compared to a similar release in the absence of
orbital and drag effects. It was found that substantial increases in column density along

the antivelocity vector can result from orbital dynamics and drag forces for particles
larger than 10 Am ejected at velocities less than 4 m/sec. Drag and orbital effects

significantly reduce the column density when viewing at 90 deg to the velocity vector.
Drag forces produce rapid clearing of particles smaller than 100 Am in front of the

spacecraft and subsequently reduce the column density when viewing along the velocity
vector. Larger particles ejected at velocities less than 1 m/sec can cause some increase in

the column density because of their longer time in the field of view resulting from their

confinement along the orbital path.

Finally, the case for an Apollo spacecraft orbiting the moon was considered.

Despite the lack of drag, there is negligible accumulauon of particles even in a column

along the velocity vector for ejection velocities larger than 0.5 m/sec.

George C. Marshall Space Flight Center
National Aeronautics and Space Administration

Marshall Space Flight Center, Alabama, September 1973
502-21-28-0000

17



C

-'-1 17 - -- - -- - - -

0.004 1-t-4+ - V E OR + ---- ir

0. 002 _ I -. *

. -- _._.._ _--,' _ 7V7IU_ __.. .. _.

- _1

-0.00 - - li - -
_%_

-0.004...... ~.~.- __.. _~.... _~ ...... ~_.

0006~ ~~~ 000 000 0 0 02 00400

8x/a

Figure 1. Particle trajectories for various ejection angles at 5v =0.001 v. for no drag.
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Figure 2. Particle trajectories for various ejection angles at 5v = 0.0005 v for no drag.
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Figure 6. Particle trajectories for -y= 60 deg, 5v =0.001 v. , with drag at 420 kmn. (The 100-/pm particle turns and is

rapidly swept away. The 1-mm particle moves initially to the rear of the spacecraft, turns after several orbits, and
then moves in front and separates rapidly. The'l-cm trajectory is similar to the drag-free case, but the effect

of drag is seen to retard the separation. This particle will also eventually turn and move
in front of the spacecraft.)
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Figure 7. Separation distance between particle and spacecraft for the same conditions as
in Figure 4 except that drag for a 100-pm particle is considered.
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Figure 8. Separation distances for 1-pm, 1-mm, and 1-cm particles ejected at 6v = 0.001 v. at various y. (The fact

that clearing time is decreased by projecting particles rearward is clearly seen.)
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Figure 8. (Concluded)
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Figure 9. Column densities from particles released continuously and isotropically with velocity 6v in a 420-km circular
orbit looking along the velocity vector compared with column densities that would result from a free expansion

of the same particles. (There is no significant accumulation from orbital effects for release velocities larger
than 4 m/sec. Smaller particles are rapidly cleared by drag and particle sizes below 100 pm will not

accumulate significantly for velocities above 18 cm/sec.)
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Figure 10. Similar to Figure 9 except that the viewing angle is 90 deg to the velocity vector. (The accumulation from
orbital effects is negligible even in the absence of drag for release velocities in excess of 10 cm/sec.)
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Figure 1. Similar to Figure 9 except that the viewing direction is opposite to the velocity vector. (In this case substantial
accumulation can take place because the particles moving rearward are retarded by drag and eventually accelerated

back toward the spacecraft. The lines are terminated where equation (53) no longer applies because particles
with larger 6v will move out of the field of view before they turn. The column densities for larger 5v

will eventually approach twice the drag-free value.)
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z Figure 12. Column densities from orbital effects (no drag) in earth orbit (Skylab) compared with column

% densities from the same particle release in lunar orbit (Apollo).


