research
Theory of Ostwald ripening in a two-component system
- Publication date
- Publisher
Abstract
When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method