46 research outputs found

    Presynaptic vesicle protein SEPTIN5 regulates the degradation of APP C-Terminal fragments and the levels of Aβ

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-β (Aβ) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of β-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aβ. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aβ in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aβ in neuronal cells.This research was supported by the Academy of Finland (grant numbers 307866 and 315459), the Sigrid Jusélius Foundation, the Strategic Neuroscience Funding of the University of Eastern Finland, and the National Institute of Mental Health of the National Institutes of Health (grant numbers R01MH099660, R01DC015776, R21HD053114, and U54HD090260). Catarina B. Ferreira is a PhD Fellow (NeurULisboa - Integrated Neurosciences PhD program, supported by an individual grant from Fundação para a Ciência e Tecnologia (FCT), (PD/BD/128390/2017, SFRH/PD/BD/114441/2016, PD/BD/128091/2016). Work was also supported by Santa Casa da Misericórdia de Lisboa (MB37-2017) and SynaNet (LISBOA-01-0145-FEDER-0073919), under the grant agreement no. 692340, and the project was co-financed by FEDER, POR Lisboa 2020, Programa Operacional Regional de Lisboa, from PORTUGAL 2020 and by Fundação para a Ciência e a Tecnologia.info:eu-repo/semantics/publishedVersio

    DHCR24 exerts neuroprotection upon inflammation-induced neuronal death

    Get PDF
    Abstract Background DHCR24, involved in the de novo synthesis of cholesterol and protection of neuronal cells against different stress conditions, has been shown to be selectively downregulated in neurons of the affected brain areas in Alzheimer’s disease. Methods Here, we investigated whether the overexpression of DHCR24 protects neurons against inflammation-induced neuronal death using co-cultures of mouse embryonic primary cortical neurons and BV2 microglial cells upon acute neuroinflammation. Moreover, the effects of DHCR24 overexpression on dendritic spine density and morphology in cultured mature mouse hippocampal neurons and on the outcome measures of ischemia-induced brain damage in vivo in mice were assessed. Results Overexpression of DHCR24 reduced the loss of neurons under inflammation elicited by LPS and IFN-γ treatment in co-cultures of mouse neurons and BV2 microglial cells but did not affect the production of neuroinflammatory mediators, total cellular cholesterol levels, or the activity of proteins linked with neuroprotective signaling. Conversely, the levels of post-synaptic cell adhesion protein neuroligin-1 were significantly increased upon the overexpression of DHCR24 in basal growth conditions. Augmentation of DHCR24 also increased the total number of dendritic spines and the proportion of mushroom spines in mature mouse hippocampal neurons. In vivo, overexpression of DHCR24 in striatum reduced the lesion size measured by MRI in a mouse model of transient focal ischemia. Conclusions These results suggest that the augmentation of DHCR24 levels provides neuroprotection in acute stress conditions, which lead to neuronal loss in vitro and in vivo

    Astrocytes and Microglia as Potential Contributors to the Pathogenesis of C9orf72 Repeat Expansion-Associated FTLD and ALS

    Get PDF
    Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases with a complex, but often overlapping, genetic and pathobiological background and thus they are considered to form a disease spectrum. Although neurons are the principal cells affected in FTLD and ALS, increasing amount of evidence has recently proposed that other central nervous system-resident cells, including microglia and astrocytes, may also play roles in neurodegeneration in these diseases. Therefore, deciphering the mechanisms underlying the disease pathogenesis in different types of brain cells is fundamental in order to understand the etiology of these disorders. The major genetic cause of FTLD and ALS is a hexanucleotide repeat expansion (HRE) in the intronic region of the C9orf72 gene. In neurons, specific pathological hallmarks, including decreased expression of the C9orf72 RNA and proteins and generation of toxic RNA and protein species, and their downstream effects have been linked to C9orf72 HRE-associated FTLD and ALS. In contrast, it is still poorly known to which extent these pathological changes are presented in other brain cells. Here, we summarize the current literature on the potential role of astrocytes and microglia in C9orf72 HRE-linked FTLD and ALS and discuss their possible phenotypic alterations and neurotoxic mechanisms that may contribute to neurodegeneration in these diseases

    Molecular Mechanisms of Synaptotoxicity and Neuroinflammation in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common neurodegenerative disorder, which is clinically associated with a global cognitive decline and progressive loss of memory and reasoning. According to the prevailing amyloid cascade hypothesis of AD, increased soluble amyloid-β (Aβ) oligomer levels impair the synaptic functions and augment calcium dyshomeostasis, neuroinflammation, oxidative stress as well as the formation of neurofibrillary tangles at specific brain regions. Emerging new findings related to synaptic dysfunction and initial steps of neuroinflammation in AD have been able to delineate the underlying molecular mechanisms, thus reinforcing the development of new treatment strategies and biomarkers for AD beyond the conventional Aβ- and tau-targeted approaches. Particularly, the identification and further characterization of disease-associated microglia and their RNA signatures, AD-associated novel risk genes, neurotoxic astrocytes, and in the involvement of complement-dependent pathway in synaptic pruning and loss in AD have set the outstanding basis for further preclinical and clinical studies. Here, we discuss the recent development and the key findings related to the novel molecular mechanisms and targets underlying the synaptotoxicity and neuroinflammation in AD

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues

    TVT-taitotasohankkeen arviointi

    No full text
    Tässä tutkielmassa selvitetään tietotekniikan käyttöä nykypäivän opetuksessa sekä perehdytään TVT-taitotasohankkeeseen. TVT-taitotasohankkeen tarkoitus on määritellä riittävä TVT-taitotaso lukion opiskelijoille ja luoda testi, jolla TVT-taitotasoa mitataan. Tässä tutkielmassa selvitetään, kuinka hanke on onnistunut taitotason määrittämisessä ja TVT-testin luonniss

    Tablet-laitteiden käyttö opetuksessa ja niiden opetuskäytön tukeminen

    No full text
    Opettajat käyttävät tablet-laitteita monilla eri tavoilla mutta tiedonhaku on selkeästi laitteen yksi suurimmista käyttötavoista. Tutkimusten mukaan opettajat tietävät, kuinka laitteita käytetään mutta heiltä puuttuu tieto siitä, kuinka laitteiden käyttö integroidaan opetukseen. Tällaisessa tilanteessa opettajat kaipaavat pedagogista tukea, jossa laitteiden opetuskäyttöä voidaan pohtia monia eri keinoja käyttäen. Tässä tutkielmassa selvitettiin kuinka tablet-laitteita on käytetty kouluissa ja kuinka niiden opetuskäyttöä voidaan tukea. Saadut tulokset olivat hyvin samankaltaisia kuin aiemmissakin tutkimuksissa
    corecore