48 research outputs found

    Seasonal pigment fluctuation in diploid and polyploid Arabidopsis revealed by machine learning-based phenotyping method PlantServation

    Full text link
    Long-term field monitoring of leaf pigment content is informative for understanding plant responses to environments distinct from regulated chambers but is impractical by conventional destructive measurements. We developed PlantServation, a method incorporating robust image-acquisition hardware and deep learning-based software that extracts leaf color by detecting plant individuals automatically. As a case study, we applied PlantServation to examine environmental and genotypic effects on the pigment anthocyanin content estimated from leaf color. We processed >4 million images of small individuals of four Arabidopsis species in the field, where the plant shape, color, and background vary over months. Past radiation, coldness, and precipitation significantly affected the anthocyanin content. The synthetic allopolyploid A. kamchatica recapitulated the fluctuations of natural polyploids by integrating diploid responses. The data support a long-standing hypothesis stating that allopolyploids can inherit and combine the traits of progenitors. PlantServation facilitates the study of plant responses to complex environments termed "in natura"

    Specific Enrichment of miRNAs in Arabidopsis thaliana Infected with Tobacco mosaic virus

    Get PDF
    RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key molecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silencing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus. MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This was partly because the viral replication protein binds to the miRNA/miRNA* duplexes. In the present study, we mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for cloning and identifying new miRNAs

    Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis

    No full text
    Abstract Background Plant cells divide by the formation of new cross walls, known as cell plates, from the center to periphery of each dividing cell. Formation of the cell plate occurs in the phragmoplast, a complex structure composed of membranes, microtubules (MTs) and actin microfilaments (MFs). Disruption of phragmoplast MTs was previously found to completely inhibit cell plate formation and expansion, indicative of their crucial role in the transport of cell plate membranes and materials. In contrast, disruption of MFs only delays cell plate expansion but does not completely inhibit cell plate formation. Despite such findings, the significance and molecular mechanisms of MTs and MFs remain largely unknown. Results Time-sequential changes in MF-distribution were monitored by live imaging of tobacco BY-2 cells stably expressing the GFP-actin binding domain 2 (GFP-ABD2) fusion protein, which vitally co-stained with the endocytic tracer, FM4-64, that labels the cell plate. During cytokinesis, MFs accumulated near the newly-separated daughter nuclei towards the emerging cell plate, and subsequently approached the expanding cell plate edges. Treatment with an actin polymerization inhibitor caused a decrease in the cell plate expansion rate, which was quantified using time-lapse imaging and regression analysis. Our results demonstrated time-sequential changes in the contribution of MFs to cell plate expansion; MF-disruption caused about a 10% decrease in the cell plate expansion rate at the early phase of cytokinesis, but about 25% at the late phase. MF-disruption also caused malformation of the emerging cell plate at the early phase, indicative of MF involvement in early cell plate formation and expansion. The dynamic movement of endosomes around the cell plate was also inhibited by treatment with an actin polymerization inhibitor and a myosin ATPase inhibitor, respectively. Furthermore, time-lapse imaging of the endoplasmic reticulum (ER) revealed that MFs were involved in ER accumulation in the phragmoplast at the late phase. Conclusion By expression of GFP-ABD2 and vital staining with FM4-64, the dynamics of MFs and the cell plate could be followed throughout plant cytokinesis in living cells. Pharmacological treatment and live imaging analysis also allowed us to quantify MF contribution to cell plate expansion during cytokinesis. Our results suggest that MFs play significant roles in cell plate formation and expansion via regulation of endomembrane dynamics.</p

    Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis-2

    No full text
    Tion. Yellow broken lines indicate parental cell wall. Effect of BA treatment on MFs in cytokinetic BY-2 cells. BY-GF11 cells were treated with DMSO or 1 μM BA for 1 h. Representative images of a single optical section at the mid-plane (mid-plane) and maximum intensity projection (projection) are presented. Time-lapse images of FM4-64-labelled cell plate expansion in BA-treated cells. Time 0 min represents chromosomal separation. Yellow broken lines indicate parental cell wall. Effect of BA treatment on the duration between chromosomal separation and complete fusion of a cell plate and parental cell wall. Note that the duration times in BA-treated cells were longer than those in control cells, and were independent of cell size. The data were obtained from 12 independent experiments of each condition. Scale bars indicate 10 μm.<p><b>Copyright information:</b></p><p>Taken from "Quantitative analysis of changes in actin microfilament contribution to cell plate development in plant cytokinesis"</p><p>http://www.biomedcentral.com/1471-2229/8/80</p><p>BMC Plant Biology 2008;8():80-80.</p><p>Published online 17 Jul 2008</p><p>PMCID:PMC2490694.</p><p></p
    corecore