396 research outputs found

    Is Adding the E Enough?: Investigating the Impact of K-12 Engineering Standards on the Implementation of STEM Integration.

    Get PDF
    The problems that we face in our ever-changing, increasingly global society are multidisciplinary, and many require the integration of multiple science, technology, engineering, and mathematics (STEM) concepts to solve them. National calls for improvement of STEM education in the United States are driving changes in policy, particularly in academic standards. Research on STEM integration in K-12 classrooms has not kept pace with the sweeping policy changes in STEM education. This study addresses the need for research to explore the translation of broad, national-level policy statements regarding STEM education and integration to state-level policies and implementation in K-12 classrooms. An interpretive multicase study design was employed to conduct an in-depth investigation of secondary STEM teachers\u27 implementation of STEM integration in their classrooms during a yearlong professional development program. The interpretive approach was used because it provides holistic descriptions and explanations for the particular phenomenon, in this case STEM integration. The results of this study demonstrate the possibilities of policies that use state standards documents as a mechanism to integrate engineering into science standards. Our cases suggest that STEM integration can be implemented most successfully when mathematics and science teachers work together both in a single classroom (co-teaching) and in multiple classrooms (content teaching—common theme)

    Appropriateness of the probability approach with a nutrient status biomarker to assess population inadequacy: a study using vitamin D

    Get PDF
    Background: There are questions about the appropriate method for the accurate estimation of the population prevalence of nutrient inadequacy on the basis of a biomarker of nutrient status (BNS). Objective: We determined the applicability of a statistical probability method to a BNS, specifically serum 25-hydroxyvitamin D [25(OH)D]. The ability to meet required statistical assumptions was the central focus. Design: Data on serum 25(OH)D concentrations in adults aged 19–70 y from the 2005–2006 NHANES were used (n = 3871). An Institute of Medicine report provided reference values. We analyzed key assumptions of symmetry, differences in variance, and the independence of distributions. We also corrected observed distributions for within-person variability (WPV). Estimates of vitamin D inadequacy were determined. Results:We showed that the BNS [serum 25(OH)D] met the criteria to use the method for the estimation of the prevalence of inadequacy. The difference between observations corrected compared with uncorrected for WPV was small for serum 25(OH)D but, nonetheless, showed enhanced accuracy because of correction. The method estimated a 19% prevalence of inadequacy in this sample, whereas misclassification inherent in the use of the more traditional 97.5th percentile high-end cutoff inflated the prevalence of inadequacy (36%). Conclusions: When the prevalence of nutrient inadequacy for a population is estimated by using serum 25(OH)D as an example of a BNS, a statistical probability method is appropriate and more accurate in comparison with a high-end cutoff. Contrary to a common misunderstanding, the method does not overlook segments of the population. The accuracy of population estimates of inadequacy is enhanced by the correction of observed measures for WPV

    Exact Bayesian curve fitting and signal segmentation.

    Get PDF
    We consider regression models where the underlying functional relationship between the response and the explanatory variable is modeled as independent linear regressions on disjoint segments. We present an algorithm for perfect simulation from the posterior distribution of such a model, even allowing for an unknown number of segments and an unknown model order for the linear regressions within each segment. The algorithm is simple, can scale well to large data sets, and avoids the problem of diagnosing convergence that is present with Monte Carlo Markov Chain (MCMC) approaches to this problem. We demonstrate our algorithm on standard denoising problems, on a piecewise constant AR model, and on a speech segmentation problem

    Mathematical methods and models for radiation carcinogenesis studies

    Get PDF
    Research on radiation carcinogenesis requires a twofold approach. Studies of primary molecular lesions and subsequent cytogenetic changes are essential, but they cannot at present provide numerical estimates of the risk of small doses of ionizing radiations. Such estimates require extrapolations from dose, time, and age dependences of tumor rates observed in animal studies and epidemiological investigations, and they necessitate the use of statistical methods that correct for competing risks. A brief survey is given of the historical roots of such methods, of the basic concepts and quantities which are required, and of the maximum likelihood estimates which can be derived for right censored and double censored data. Non-parametric and parametric models for the analysis of tumor rates and their time and dose dependences are explained

    Creating an Instrument to Measure Student Response to Instructional Practices

    Full text link
    BackgroundCalls for the reform of education in science, technology, engineering, and mathematics (STEM) have inspired many instructional innovations, some research based. Yet adoption of such instruction has been slow. Research has suggested that students’ response may significantly affect an instructor’s willingness to adopt different types of instruction.PurposeWe created the Student Response to Instructional Practices (StRIP) instrument to measure the effects of several variables on student response to instructional practices. We discuss the step‐by‐step process for creating this instrument.Design/MethodThe development process had six steps: item generation and construct development, validity testing, implementation, exploratory factor analysis, confirmatory factor analysis, and instrument modification and replication. We discuss pilot testing of the initial instrument, construct development, and validation using exploratory and confirmatory factor analyses.ResultsThis process produced 47 items measuring three parts of our framework. Types of instruction separated into four factors (interactive, constructive, active, and passive); strategies for using in‐class activities into two factors (explanation and facilitation); and student responses to instruction into five factors (value, positivity, participation, distraction, and evaluation).ConclusionsWe describe the design process and final results for our instrument, a useful tool for understanding the relationship between type of instruction and students’ response.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/1/jee20162_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136692/2/jee20162.pd
    • 

    corecore