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Abstract--Research on radiation carcinogenesis requires a twofold approach. Studies of primary 
molecular lesions and subsequent cytogenetic changes are essential, but they cannot at present 
provide numerical estimates of the risk of small doses of ionizing radiations. Such estimates 
require extrapolations from dose, time, and age dependences of tumor rates observed in animal 
studies and epidemiological investigations, and they necessitate the use of statistical methods 
that correct for competing risks. A brief survey is given of the historical roots of such methods, 
of the basic concepts and quantities which are required, and of the maximum likelihood estimates 
which can be derived for right censored and double censored data. Non-parametric and parametric 
models for the analysis of tumor rates and their time and dose dependences are explained. 
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1. I N T R O D U C T I O N  

RECENT years have seen basic changes in the philosophy 
of radiation protection. When ICRP introduced the 
distinction between stochastic and non-stochastic effects 
[1] it may have chosen somewhat inadequate and per- 
haps misleading terms [2]. However it did account for 
a real and important difference between effects which 
evolve presumably from damage to one single cell and 
effects which result from a substantial degree of cell 
killing in an organ. The latter effects which have been 
named, or misnamed, non-stochastic fit into the older 
system of radiation protection which was aimed, at least 
in principle, at the avoidance of any detriment from 
ionizing radiation. The former effects which are called 
stochastic do not fit into the system, as there is certainly 
no threshold dose for the production of hereditary 
effects and probably no threshold dose for radiation 
carcinogenesis. A system of avoiding radiation effects 
altogether is therefore impossible and a different phil- 
osophy of radiation protection had to be introduced 
which aims at balancing benefits and detriments. 

The changing orientation of radiation protection-- 
Harald Rossi has, not without critical reserve, spoken 
of an assessment system replacing the earlier limitation 
system [3]--has motivated and will continue to motivate 
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attempts to obtain numerical estimates of the pro- 
babilities of stochastic effects at small doses. ICRP and 
similar bodies of experts have, indeed, published risk 
factors for stochastic effects [1, 4, 5]. These numbers 
are often taken at face value and are used to convert 
collective doses into numbers of resulting deaths, 
although the risk coefficients remain tentative, and 
although there is rising evidence from RBE studies for 
neutrons that they cannot be correct both for sparsely 
and densely ionizing radiations, and that the quality 
factors for radiation protection need to be revised. 

The basic program of an assessment system, however, 
may persist and it is likely that similar goals will be 
sought in other fields, such as chemical carcinogenesis. 
The new, ambitious aims require that radiation pro- 
tection will receive better quantitative information from 
molecular biology and biostatistics as well as epi- 
demiology. 

One can probably not expect numerical estimates of 
risks for radiation carcinogenesis within the near future 
even from a substantially improved knowledge of the 
basic lesions in DNA, their repair, their promotion and 
their ultimate expression. The black-box approach of 
epidemiology and of large scale animal experiments will 
therefore remain a necessity, and it will have to be 
accompanied by the biophysicist's attempt to provide 
ordering schemes for the multitude of data for different 
radiations, at different doses, under the influence of 
different dose modifying factors. At the outset of this 
symposium it is, therefore, useful to survey basic con- 
cepts and numerical procedures which are required in 
radiation-carcinogenesis studies and, particularly, in 
attempts to quantify the effects of small doses of ionizing 
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radiations and to determine the relative biological effec- 
tiveness of sparsely and densely ionizing radiations. 

2. B A S I C  C O N C E P T S  

2.1. The roots o f  actuarial statistics 
Statistical methods were initially developed for the 

most predictable and most error-free processes, the 
motion of stars, but have later found their broadest 
application in sciences that deal with largely unpre- 
dictable and error-prone systems, namely biology and 
medicine. It is therefore not entirely surprising that 
methods for the rigorous analysis of dose and time 
dependences in carcinogenesis can be traced back to 
the work of a man who happens to be remembered for 
his astronomical work and who shared with Jaques 
Bernoulli--the founder of the celebrated family of 
mathematicians--the scientific interest in the spec- 
tacular comet of 1682. Edmund Halley derived the first 
tables of age-dependent mortality rates from records of 
the city of Breslau towards the end of the seventeenth 
century. His tables permitted, almost a century later, 
the development of actuarial methods by Daniel Ber- 
noulli [6]. When it was first recognized that vaccination 
could reduce or eliminate small pox, Bernoulli joined 
the movement to make it mandatory. To support the 
demand he wished to demonstrate the resultant increase 
of life expectancy. 

It was evident that a reliable analysis could not be 
performed by simply adding that fraction of the popu- 
lation to the survivors, after the introduction of inocu- 
lation, which had formerly been killed by small pox. 
Mortality at the time was so high, even at young ages, 
that those saved from small pox were not unlikely to 
die soon from other causes. Bernoulli developed an 
approach which is usually called the Kaplan-Meier 
method [7] to correct for competing risks. There is no 
need to deal with the fairly elementary mathematics 
which led to Bernoulli's result in Fig. 1. The essential 
point is that a procedure was utilized which was based 
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FIG. 1. Actual survival and expected survival after elimination 
of small pox according to the competing risk corrected cal- 

culation of Bernoulli [6]. 

not on the crude counting of events but on the notion 
of rates, or hazard rates as the statistician is now used 
to say. It is striking that 200 years later some important 
epidemiological studies in radiation carcinogenesis and 
some equally important large scale animal experiments 
are still analysed without competing risk correction. 

It is of interest that there was concern even in 1760 
about possible errors arising in the analysis due to 
hidden assumptions of statistical independence between 
the competing causes of death. Such doubts induced 
one of the referees of Bernoulli's essay--possibly 
d 'Alembert- - to  block publication for more than six 
years. 

The statistician will agree that it is not necessary to 
retrace Bernoulli's method. He may go further and 
claim, as has been done in an earlier conference on the 
topic [8], that mathematical methods need not be the 
concern of those who conduct experimental studies in 
radiation carcinogenesis. The only need would be to 
adopt mathematical notation, and the application of 
the well developed methods of mathematical statistics 
would then be routine. However, to speak a language 
properly, one must understand it. It is equally necessary 
to comprehend the terminology and recognize the 
essence of the models and the algorithms for which it is 
used. 

2.2. Basic quantities 
The fundamental quantity in studies of the age and 

dose dependences of stochastic events is the hazard 
rate. In carcinogenesis studies one may use the more 
specific term tumor rate. The hazard rate, r(t), is the 
probability per unit time, at time t, that the event under 
study, e.g. the appearance of a specified tumor, takes 
place in an individual which is still at risk. The variable 
t may be the age or it may be the time after a treatment 
whose effect is being observed. In radiation studies 
one may deal with additional variables such as age at 
exposure or dose of radiation. For brevity such 
additional variables will not be indicated. 

While the influence of ionizing radiations on tumor 
rates is the primary objective, the analysis is performed 
in terms of certain related quantities which are less 
affected by statistical uncertainties and are therefore 
more readily estimated. 

The quantity most closely linked to the tumor rate is 
its time integral, the cumulative tumor rate or, more 
generally, the cumulative hazard: 

t 

= I r(t) dt. (1) R(t)  
0 

At small numerical values this quantity equals the prob- 
ability for a tumor in an individual during the specified 
time. For less rare events the identity does not apply. 
The cumulative tumor rate is then larger than the prob- 
ability for a tumor. It equals the expected number of 
events in a hypothetical individual which remains at risk 
even after it has been affected once or several times. In 
certain studies, such as the experiments on Sprague- 
Dawley rats with high incidence of mammary tumors 
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which can be removed by surgery, the cumulative tumor 
rate is the mean number of tumors per animal (see Fig. 
2, below). 

To exemplify the cumulative hazard function further, 
one may return to the example of mortality statistics 
where it is evident that at high ages the cumulative 
mortality rate exceeds unity. At age hundred years it is 
roughly 7, if it is assumed that one out of 1000 persons 
lives beyond this age (see equation (4), below). 

2.3. The notion of censored data 
If no individual in a collective is removed from obser- 

vation except by the events under study, one speaks of 
uncensored or complete data. Apart from simple survival 
studies one rarely deals with this ideal situation. Usually 
there are competing risks, such as intercurrent 
mortality, which remove some or most of the individuals 
from the population before the event of interest has 
taken place. 

A tumor can be palpable, such as mammary tumors 
of the rat, or it can be rapidly lethal. In both cases it is 
readily discovered. If one studies such manifest tumors 
one has either actual times to the tumor, or- - in  those 
animals which die for unrelated reasons or are otherwise 
removed from the s tudy--one has an inequality; the 
hypothetical time to the tumor is larger than the 
observed time of censoring. The combination of exact 
and incomplete observations is referred to by the term 
right censored data. For right censored data there are 
familiar estimates for the cumulative tumor rate or 
related quantities. There are also established math- 
ematical methods for at least one type of model, the 
proportional hazards model (Section 3.1). 

Another type of data presents more serious math- 
ematical difficulties. If a tumor produces no appreciable 
life shortening, and if it can be found only incidentally 
in an animal dead for unrelated causes, the actual times 
to the tumor are never observed. If a dead animal is 
found to carry the tumor, the time to the tumor has 
been less than the time to death. If a dead animal does 
not carry the tumor, the hypothetical time to the tumor 
is larger than the observed time to death. The infor- 
mation is incomplete in either case, and the term double 
censored refers to this fact. An example of double 
censored data are observations of lung carcinomas in 
experiments of Lafuma et al. [10] on Sprague-Dawley 
rats. The carcinomas are found incidentally in autopsy, 
and there is evidence that they do not contribute sub- 
stantially to life shortening. 

Methods to estimate competing risk corrected inci- 
dences or cumulative hazards for double censored data 
have not been employed in radiation-carcinogenesis 
studies until recently. The same applies to models. They 
have not been used with double censored data. It is one 
of the purposes of this survey to indicate that methods 
exist to derive estimates of prevalences [11, 12] and 
to apply parametric or non-parametric models [13, 14] 
even with double censored data. 

In fact, one needs more than methods for right cen- 
sored and for double censored data, because it is often 
unclear whether the observation of a tumor is incidental 
or not. This points back to the problem of the statistical 

interdependence of competing risks which had arisen 
even in Bernoulli's initial application of actuarial stat- 
istics. Such complications are disregarded here (see e.g. 
[15, 16]). 

2.4. Maximum likelihood estimates of the cumulative 
hazard rate or related quantities 

In a sufficiently large collective one can estimate the 
hazard rates directly. The study of nationwide age- 
dependent mortality rates or tumor rates is an example. 
In most radiation studies numbers are too small for such 
a procedure. Less direct methods are then required. 

The simplest method is the estimation of the cumu- 
lative tumor rate by the sum-limit estimate. The method 
[17, 18] applies to right censored data and consists in 
adding the reciprocals of the numbers, Ni, of individuals 
still at risk at all the times, tg, when the event takes place 
in one individual: 

t~<, 1 Q~<, 1~°'5 
/ ~ ( t )  = ~//-+ N2 / . ( 2 )  

The sign A indicates, according to usual notation, that 
the quantity is an estimate, rather than the true value. 
The expression for the standard error is listed without 
derivation (see [9, 19, 20]). The estimate itself can be 
understood intuitively. If 100 individuals are still at risk 
the occurrence of the event in one individual amounts 
to an increase of the cumulative tumor rate by 0.01. If 
20 individuals are still at risk the occurrence of the event 
in one individual has more weight; it corresponds to an 
increase of the cumulative tumor rate by 0.05. Figure 2 
gives, as an example, the cumulative mammary tumor 
rate for the controls and the lowest neutron dose in the 
experiments of Shellabarger on Sprague-Dawley rats 
[9]. 

The Kaplan-Meier formula [7], also termed product- 
limit estimate, has been more familiar in the past. It 
expresses the multiplicative decrease of the 'survival 
probability', which is a somewhat misleading term for 
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FIG. 2. The cumulative mammary tumor rate in" Sprague- 
Dawley rats and its standard deviation (see equation (2)) as a 
function of time after exposure to 1 mGy of 430 keV neutrons 

[9]. The lower curve gives the control incidence. 
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the probability to be free from the tumor at the specified 
time: 

S ( t ) = l ~ ( l ~ - 7 ) .  (3) 
ti<l 

Equations (2) and (3) apply when all tumor-appearance 
times are resolved. Evident modifications apply to 
grouped data. 

S(t) is, in the same way as the cumulative tumor rate, 
an abstract quantity that can not be observed directly 
in the presence of censoring. It is the hypothetical 
probability of an individual to incur no tumor, under 
the assumption that it is not removed from the popu- 
lation due to competing risks. The quantities S(t) and 
R(t) are linked by the relation: 

S(t) = e-R(0. (4) 

The considerations on models in the subsequent section 
will show that the hazard function, R(t), is a more basic 
concept than S(O. The utilization of S(O or R(O is, 
nevertheless, largely equivalent. Frequently the logar- 
ithm of S(t) is plotted vs t and, as shown by the example 
of Fig. 3, the same curves are then obtained as in a plot 
of R(t) vs t. 
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FIG. 3. The cumulative tumor rate, R(t), and the probability 
for no tumor, S(t), for all lethal tumors produced in Sprague- 
Dawley rats by the specified doses, Dn in Gy, of fission 
neutrons. The curves are maximum likelihood solutions of the 
proportional hazard model (see Section 3.1) for data from a 
current, unpublished study of Lafuma et al. The curves are 
given as broken lines when either less than 4 animals have 
already died or less than 4 animals are still alive in the group. 

Equation (4) holds also for the estimates from 
Equations (2) and (3), provided the samples are suf- 
ficiently large. For small samples the sum-limit and the 
product-limit estimates need not be entirely equivalent. 
When the last individual in a group is affected, the 
Kaplan-Meier formula yields the incidence 1; the cor- 
responding cumulative tumor rate is infinite. The sum- 
limit estimate leads, under the same condition, to more 
meaningful, finite values of the cumulative tumor rate 
which corresponds to incidences less than 1. 

There are no simple formulae to estimate competing 
risk corrected incidences from double censored data. 
However, as pointed out by Hoel and Walburg [11] a 
considerable time ago, estimates can be derived by the 
method of isotonic regression which requires a relatively 
simple algorithm [12] but has hardly been applied to 
radiation carcinogenesis studies. Figure 4 gives an exam- 
ple of a recent application to the double censored data 
obtained in the study of lung carcinomas in Sprague- 
Dawley rats after neutron irradiation [14]. Although 
isotonic regression is a useful procedure applicable in 
radiation studies, its value is limited because there is 
no general method to obtain standard errors in small 
samples. 

The concept of double censored data implies that the 
mortality rate is the same for animals with or without 
the tumor. It follows that the incidence, 1-S(t) ,  is equal 
to the probability for the tumor in animals still alive at 
time t. To indicate this simple interpretation the term 
prevalence, rather than incidence, is used in the example 
of the lung carcinomas of the Sprague-Dawley rat. 

3. T H E  U S E  O F  M O D E L S  

The direct estimates of the cumulative tumor rates or 
incidences represent the information from experimental 
data most reliably, because they are not affected by 
assumptions which are always inherent in models. 
Whenever one deals with sufficiently large experimental 
groups--as in the example of Fig. 2-- the direct esti- 
mates are most suitable. 
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In many experimental studies, and in most epi- 
demiological investigations, event frequencies are too 
small to yield useful estimates of the time dependences. 
Models are then required to filter out or, at least, to 
reduce the influences of statistical uncertainties. 
However, it is often difficult to separate the artefacts 
produced by a model from meaningful conclusions, and 
it is therefore necessary to compare different models in 
their application to a data set. The present survey is not 
concerned with the use of models to elucidate mech- 
anisms. Although this aspect is always inherent in the 
utilization of models, the mathematical analysis is pri- 
marily directed towards the interpolation and extra- 
polation of data. The multitude of models and algor- 
ithms requires some guidance by means of a rough 
classification. 

3.1. Non-parametric models 
The term non-parametric applies to models which 

postulate no analytical expressions for the time or dose 
dependences of tumor rates. The most familiar example 
is the proportional hazards model. Although the 
approach is more general, it will be explained for the 
particularly simple, but not infrequent condition that 
one deals with a number of dose classes. The pro- 
portional hazards model admits any dependence, R(t), 
of the cumulative tumor rate on time with the only 
constraint that R(t) may not decrease with time. 
However, instead of admitting an arbitrary dependence 
on dose, D, a separation of the two variables is 
postulated: 

R(t, D) = A(D) . R(t). (5) 

R(O is termed the base line function, the values ;~(D) 
are the proportional hazards factors. 

In the simple case of several dose groups (i = 1,2.. .  
/) one deals with one proportional hazards factor for 
each group: 

R(t, D,) = A i • R(t), (i = 1 ,2 . . . / ) .  (6) 

The normalization of the proportional hazards factors 
is arbitrary. One can, for example, require that the 
geometric mean of all proportional hazards factors be 
unity or one can set the smallest of the proportional 
hazards factors equal to unity. Different normalizations 
amount merely to a factor in the base-line function, 
R(t). The proportional hazards model is solved by deriv- 
ing the best base-line function and the best set of pro- 
portional hazards factors in the sense of maximum like- 
lihood. This is achieved by an algorithm due to Cox 
(for a FORTRAN listing see [15]). It is important to 
note that the base line function is not obtained from a 
control group, but from the entirety of all data. In 
fact there need not be a control group. One can, for 
example, utilize the proportional hazards model to com- 
pare a group of animals exposed to a neutron dose with 
a group exposed to a dose of X rays, and one obtains 
then one joint estimate of the time dependence and a 
ratio of hazard factors. 

The proportional hazards assumption is not the only 
possible postulate. An alternative assumption of com- 
parable simplicity--and more appropriate to the analy- 

sis of promoting factors--is the accelerated hazards 
model: 

R(t, D) = R(a(D) . t). (7) 

A further assumption which agrees well with the data 
for mammary tumors in the Sprague-Dawley rats [9] is 
the time-shift model: 

R(t, D) = R(t + s(O)). (8) 

It is evident that none of these models has full validity. 
However, the models are suitable to represent exper- 
imental observations within certain ranges of time and 
dose. 

In those relatively few instances where non-para- 
metric models have been used in radiation studies the 
attention has been almost exclusively focused on a pro- 
portional hazards model. The reason is not an actual 
preference for this model, but the attractive simplicity 
of the Cox algorithm which provides the numerical 
solutions. 

Simplicity of the computational procedure is however 
no valid criterion for the choice of a model. Math- 
ematical procedures for the acceleration model or the 
time-shift model are therefore equally necessary. More 
general procedures are also required because the Cox 
algorithm is applicable to right censored but not to 
double-censored data. In the recent studies on radon 
and neutron induced pulmonary neoplasms [13, 14] it 
has been shown that numerical solutions can be obtained 
for all three models and both for right-censored and 
double-censored data. Figure 5 gives for comparison to 
Fig. 4 the results obtained from the neutron-irradiation- 
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studies with the accelerated hazards model and the time- 
shift model. The necessary optimization algorithms with 
non-linear constraints are complicated: with some data 
sets the convergence of the algorithms is slow or even 
unreliable. However these are technical difficulties 
which are far less demanding and costly than other 
aspects of epidemiological studies or large scale animal 
experiments. The essential point is that maximum like- 
lihood solutions can be obtained for all three models, 
both for right-censored and double-censored data. The 
radon inhalation studies of Lafuma et al. [13] and the 
subsequent RBE analysis of neutron and radon induced 
lung carcinomas [14] are, up to now, the only appli- 
cations. However, it is likely that the comparative util- 
ization of non-parametric models will become common 
in radiation carcinogenesis studies. 

3.2. Parametric models 
Non-parametric models are attractive because they 

introduce a minimum of a-priori assumptions con- 
cerning the time or dose dependence of tumor rates. 
Additional methods are, however, required if one can 
not form sufficiently large dose classes to obtain mean- 
ingful results. 

A partly parametric approach can be employed by 
postulating an analytical expression for the dose depen- 
dence. Examples are the linear-quadratic dependence 
or the linear-quadratic dependence modified by a 
reduction factor, as postulated in the mouse leukemia 
studies of Mole [21]: 

R(t, D) = (aD + bD 2) e-~D . R(t). (9) 

With such models one can analyse data with varying 
dose values and one obtains, in addition to the non- 
parametric time dependence, the maximum likelihood 
estimates of the linear and the quadratic terms in 
absorbed dose which are required in biophysical con- 
siderations, in RBE studies, and in the derivation of 
risk coefficients. 

The proportional hazards algorithm of Cox, as it 
is generally available [15], cannot be utilized for this 
modified approach. However, the necessary modi- 
fications of the numerical procedure are comparatively 
simple. An example for the application of the approach 
is the recent new analysis of the induction of osteo- 
sarcomas in the radium-224 patients of the follow-up 
study of Spiess [22]. 

In animal studies one deals frequently with dose 
groups but obtains event frequencies too low to permit 
the non-parametric approach. One can then postulate 
analytical expressions for the time dependence of the 
tumor rates. Various models have been used; however 
the most suitable and familiar one appears to be the 
Weibull model. It postulates a power function of time 
for the hazard rate. The simplicity of the postulated 
function makes it a special case both of the proportional 
hazards and the accelerated hazards model. With the 
Weibull model it is meaningless to ask whether an 
irradiation produces more tumors, or the same number 
of tumors earlier; the time dependence can be under- 

stood in either way: 

R ( t , D )  = k ( D ) .  tP 
(10) 

= (c (D) .  t) p, with k(D)  = c(D) p. 

Additional parameters, e.g. a latent period which may 
or may not depend on dose, have been considered. But 
in agreement with theory [15], it has been demonstrated 
[23] in an application of the Weibull model to the data 
of Mays et al. on plutonium induced osteosarcomas in 
beagles that the inclusion of the additional parameter 
produces no additional information and no substantially 
better fit to the data. The analysis of Broerse et al. of 
the large scale mammary tumor experiment at TNO 
[24, 25] illustrates further the application of the Weibull 
model. 

The maximum-likelihood solutions of the parametric 
models present no numerical difficulties both for right- 
censored and double-censored data. The equations for 
the likelihood that apply to the different models and to 
the different types of data are not given in this survey, 
but they can readily be derived. It is important to utilize 
the approach in terms of likelihood. Approximations in 
terms of least squares bring no advantage and can lead 
to faulty results when one deals with samples of small 
or moderate size. 

4. C O N C L U S I O N S  

An analysis in terms of crude incidences is still not 
uncommon in radiation carcinogenesis studies. Present 
risk estimates in radiation protection are still partly 
based on data which were not corrected for competing 
risks. This situation is rapidly changing. Numerical 
methods for the use of non-parametric and parametric 
models in radiation carcinogenesis studies will be further 
improved and will become generally available. This 
should facilitate comparisons and should make it easier 
to recognize artefacts introduced by models. It should 
also facilitate the intercomparison of results for different 
tumor systems and of work performed at different lab- 
oratories. Radiation is the most widely studied carcino- 
gen, and a consistent treatment of the vast range of 
epidemiological and experimental data is the pre- 
condition for extrapolations required in the deter- 
mination of risk coefficients and of the RBE of different 
types of ionizing radiations at low doses. 

Important problems had to be disregarded in this 
survey. The difficult grey zone between right-censored 
and double-censored data has not been considered. Nor 
has it been possible to deal with the derivation of error 
ranges for the results obtained with parametric or non- 
parametric models. The necessary statistical techniques 
are still inadequate. But there is a growing use of 
bootstrap methods and related simulation procedures. 

One may add the observation that tests for right- 
censored data, such as the logrank test or the gen- 
eralized rank-sum tests, are of comparatively recent 
origin. Corresponding non-parametric tests for double- 
censored data do not exist, although one can construct 
tests in the case of large samples. 



Radiation carcinogenesis studies 717 

Compet ing  risk correc ted  analyses, i.e. determi-  
nations of  tumor  rates and their  t ime and dose depen- 
dences,  are necessary for the pragmatic  purposes of 
radiation protect ion,  and can fur ther  the understanding 
of the molecular  and cellular processes underlying car- 
cinogenesis. One  may also expect  that the general  use 
of the methods  will st imulate the improvement  of  stat- 
istical methods  where  they are still lacking. 
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