578 research outputs found
The enigmatic mode of action of the lantibiotic epilancin 15X
Epilancin 15X is a lantibiotic that has an antimicrobial activity in the nanomolar concentration range towards Staphylococcus simulans. Such low MICs usually imply that these peptides employ a mechanism of action (MoA) involving high affinity targets. Here we studied this MoA by using epilancin 15X's ability to dissipate the membrane potential of intact S. simulans cells. These membrane depolarization assays showed that treatment of the bacteria by antibiotics known to affect the bacterial cell wall synthesis pathway decreased the membrane depolarization effects of epilancin 15X. Disruption of the Lipid II cycle in intact bacteria using several methods led to a decrease in the activity of epilancin 15X. Antagonism-based experiments on 96-well plate and agar diffusion plate pointed towards a possible interaction between epilancin 15X and Lipid II and this was confirmed by Circular Dichroism (CD) based experiments. However, this interaction did not lead to a detectable effect on either carboxyfluorescein (CF) leakage or proton permeability. All experiments point to the involvement of a phosphodiester-containing target within a polyisoprene-based biosynthesis pathway, yet the exact identity of the target remains obscure so far
Aminocarboxylic acids related to aspergillomarasmine A (AMA) and ethylenediamine-N,N'-disuccinic acid (EDDS) are strong zinc-binders and inhibitors of the metallo-beta-lactamase NDM-1
Microbial Biotechnolog
Hubble Space Telescope Grism Spectroscopy of Extreme Starbursts Across Cosmic Time: The Role of Dwarf Galaxies in the Star Formation History of the Universe
Near infrared slitless spectroscopy with the Wide Field Camera 3, onboard the
Hubble Space Telescope, offers a unique opportunity to study low-mass galaxy
populations at high-redshift (1-2). While most high surveys are
biased towards massive galaxies, we are able to select sources via their
emission lines that have very-faint continua. We investigate the star formation
rate (SFR)-stellar mass () relation for about 1000 emission-line
galaxies identified over a wide redshift range of . We use the H emission as an accurate SFR indicator and correct
the broadband photometry for the strong nebular contribution to derive accurate
stellar masses down to . We focus here on a
subsample of galaxies that show extremely strong emission lines (EELGs) with
rest-frame equivalent widths ranging from 200 to 1500 \AA. This population
consists of outliers to the normal SFR- sequence with much higher
specific SFRs ( Gyr). While on-sequence galaxies follow a
continuous star formation process, EELGs are thought to be caught during an
extreme burst of star formation that can double their stellar mass in less than
Myr. The contribution of starbursts to the total star formation density
appears to be larger than what has been reported for more massive galaxies in
previous studies. In the complete mass range log()
and a SFR lower completeness limit of about 2 yr (10
yr) at (), we find that starbursts having
EW(H) 300, 200, and 100 A contribute up to , 18,
and 34 %, respectively, to the total SFR of emission-line selected sample at
. The comparison with samples of massive galaxies shows an increase
in the contribution of starbursts towards lower masses.Comment: 11 pages, 6 figures. The Astrophysical Journal, in pres
Nicotinamide N-methyltransferase catalyses the N-methylation of the endogenous ß-carboline norharman: evidence for a novel detoxification pathway
Nicotinamide N-methyltransferase (NNMT) is responsible for the N-methylation of nicotinamide to 1-methylnicotinamide. Our recent studies have demonstrated that NNMT regulates cellular processes fundamental to the correct functioning and survival of the cell. It has been proposed that NNMT may possess β-carboline (BC) N-methyltransferase activity, endogenously and exogenously produced pyridine-containing compounds which, when N-methylated, are potent inhibitors of Complex I and have been proposed to have a role in the pathogenesis of Parkinson's disease. We have investigated the ability of recombinant NNMT to N-methylate norharman (NH) to 2-N-methylnorharman (MeNH). In addition, we have investigated the toxicity of the BC NH, its precursor 1,2,3,4-tetrahydronorharman (THNH) and its N-methylated metabolite MeNH, using our in vitro SH-SY5Y NNMT expression model. Recombinant NNMT demonstrated NH 2N-methyltransferase activity, with a Km of 90 ± 20 µM, a kcat of 3 × 10(-4) ± 2 × 10(-5) s(-1) and a specificity constant (kcat/Km) of 3 ± 1 s(-1) M(-1) THNH was the least toxic of all three compounds investigated, whereas NH demonstrated the greatest, with no difference observed in terms of cell viability and cell death between NNMT-expressing and non-expressing cells. In NNMT-expressing cells, MeNH increased cell viability and cellular ATP concentration in a dose-dependent manner after 72 and 120 h incubation, an effect that was not observed after 24 h incubation or in non-NNNT-expressing cells at any time point. Taken together, these results suggest that NNMT may be a detoxification pathway for BCs such as NH
Staphylococcus aureus sortase a-mediated incorporation of peptides: Effect of peptide modification on incorporation
The endogenous Staphylococcus aureus sortase A (SrtA) transpeptidase covalently anchors cell wall-anchored (CWA) proteins equipped with a specific recognition motif (LPXTG) into the peptidoglycan layer of the staphylococcal cell wall. Previous in situ experiments have shown that SrtA is also able to incorporate exogenous, fluorescently labelled, synthetic substrates equipped with the LPXTG motif (K(FITC)LPETG-amide) into the bacterial cell wall, albeit at high concentrations of 500 μM to 1 mM. In the present study, we have evaluated the effect of substrate modification on the incorporation efficiency. This revealed that (i) by elongation of LPETG-amide with a sequence of positively charged amino acids, derived from the C-terminal domain of physiological SrtA substrates, the incorporation efficiency was increased by 20-fold at 10 μM, 100 μM and 250 μM; (ii) Substituting aspartic acid (E) for methionine increased the incorporation of the resulting K(FITC)LPMTG-amide approximately three times at all concentrations tested; (iii) conjugation of the lipid II binding antibiotic vancomycin to K(FITC)LPMTG-amide resulted in the same incorporation levels as K(FITC)LPETG-amide, but much more efficient at an impressive 500-fold lower substrate concentration. These newly developed synthetic substrates can potentially find broad applications in for example the in situ imaging of bacteria; the incorporation of antibody recruiting moieties; the targeted delivery and covalent incorporation of antimicrobial compounds into the bacterial cell wall
Mechanistic insights into the C<sub>55</sub>-P targeting lipopeptide antibiotics revealed by structure-activity studies and high-resolution crystal structures
The continued rise of antibiotic resistance is a global concern that threatens to undermine many aspects of modern medical practice. Key to addressing this threat is the discovery and development of new antibiotics that operate by unexploited modes of action. The so-called calcium-dependent lipopeptide antibiotics (CDAs) are an important emerging class of natural products that provides a source of new antibiotic agents rich in structural and mechanistic diversity. Notable in this regard is the subset of CDAs comprising the laspartomycins and amphomycins/friulimicins that specifically target the bacterial cell wall precursor undecaprenyl phosphate (C(55)-P). In this study we describe the design and synthesis of new C(55)-P-targeting CDAs with structural features drawn from both the laspartomycin and amphomycin/friulimicin classes. Assessment of these lipopeptides revealed previously unknown and surprisingly subtle structural features that are required for antibacterial activity. High-resolution crystal structures further indicate that the amphomycin/friulimicin-like lipopeptides adopt a unique crystal packing that governs their interaction with C(55)-P and provides an explanation for their antibacterial effect. In addition, live-cell microscopy studies provide further insights into the biological activity of the C(55)-P targeting CDAs highlighting their unique mechanism of action relative to the clinically used CDA daptomycin
Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease
A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.España Ministerio de Economía y Competitividad (contract numbers CTQ2015-64425-C2-1-R and SAF2016-76083-R)Junta de Andalucía contract number FQM2012-146
Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human -Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease
A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.Ministerio de Economía y Competitividad CTQ2015-64425-C2-1-R , SAF2016-76083-RJunta de Andalucía FQM2012-1467Japan Society for the Promotion of Science JSPS KAKENHI 17K1005
Computational Modeling and Design of New Inhibitors of Carbapenemases: A Discussion from the EPIC Alliance Network
The EPIC consortium brings together experts from a wide range of fields that include clinical, molecular and basic microbiology, infectious diseases, computational biology and chemistry, drug discovery and design, bioinformatics, biochemistry, biophysics, pharmacology, toxicology, veterinary sciences, environmental sciences, and epidemiology. The main question to be answered by the EPIC alliance is the following: “What is the best approach for data mining on carbapenemase inhibitors and how to translate this data into experiments?” From this forum, we propose that the scientific community think up new strategies to be followed for the discovery of new carbapenemase inhibitors, so that this process is efficient and capable of providing results in the shortest possible time and within acceptable time and economic costs.This study has been funded by Instituto de Salud Carlos III through the project AC20/00012 co-funded by European Regional Development Fund, ERDF, “A way to make Europe”). This project has been supported under the framework of the JPIAMR—Joint Programming Initiative on Antimicrobial Resistance
Quantification of Protein Glycosylation Using Nanopores
Although nanopores can be used for singlemolecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify posttranslational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis
- …