104 research outputs found

    Effect of Helicobacter pylori Vacuolating Toxin on Maturation and Extracellular Release of Procathepsin D and on Epidermal Growth Factor Degradation

    Get PDF
    Abstract The effect of vacuolating toxin (VacA) fromHelicobacter pylori on endosomal and lysosomal functions was studied by following procathepsin D maturation and epidermal growth factor (EGF) degradation in HeLa cells exposed to the toxin. VacA inhibited the conversion of procathepsin D (53 kDa) into both the intermediate (47 kDa) and the mature (31 kDa) form. Nonprocessed cathepsin D was partly retained inside cells and partly secreted in the extracellular medium via the constitutive secretion pathway. Intracellular degradation of EGF was also inhibited by VacA with a similar dose-response curve. VacA did not alter endocytosis, cell surface recycling, and retrograde transport from plasma membrane totrans-Golgi network and endoplasmic reticulum, as estimated by using transferrin, diphtheria toxin, and ricin as tracers. Subcellular fractionation of intoxicated cells showed that procathepsin D and nondegraded EGF accumulate in lysosomes. Measurements of intracellular acidification with fluorescein isothiocyanate-dextran revealed a partial neutralization of the lumen of endosomes and lysosomes, sufficient to account for both mistargeting of procathepsin D outside the cell and the decreased activity of lysosomal proteases

    Vacuoles Induced by Helicobacter pylori Toxin Contain Both Late Endosomal and Lysosomal Markers

    Get PDF
    Intoxication of mammalian cells with the vacuolating toxin (VacA) released by Helicobacter pylori causes the formation of large acidic vacuoles containing the vacuolar ATPase proton pump and Rab7, a late endosome marker. Here, we describe a novel subcellular fractionation procedure, and we show that nanomolar concentrations of VacA induce a clear redistribution of lysosomal membrane glycoproteins among endocytic compartments. This redistribution is an early event in the process of cellular intoxication by VacA and precedes the formation of macroscopic vacuoles. The absence of the cation independent mannose 6-P receptor and the presence of Rab7 and of lysosomal membrane proteins in the newly formed compartment suggest that the vacuolating toxin induces the accumulation of a post-endosomal hybrid compartment presenting both late endosomal and lysosomal features

    Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities

    Get PDF
    NarE is an arginine-specific mono-ADPribosyltransferase identified in Neisseria meningitidis that requires the presence of iron in a structured cluster for its enzymatic activities. In this study, we show that NarE can perform auto-ADP-ribosylation. This automodification occurred in a time- and NADconcentration- dependent manner; was inhibited by novobiocin, an ADP-ribosyltransferase inhibitor; and did not occur when NarE was heat inactivated. No reduction in incorporation was evidenced in the presence of high concentrations of ATP, GTP, ADP-ribose, or nicotinamide, which inhibits NAD-glycohydrolase, impeding the formation of free ADP-ribose. Based on the electrophoretic profile of NarE on auto-ADP-ribosylation and on the results of mutagenesis and mass spectrometry analysis, the auto-ADP-ribosylation appeared to be restricted to the addition of a single ADP-ribose. Chemical stability experiments showed that the ADP-ribosyl linkage was sensitive to hydroxylamine, which breaks ADP-ribose-arginine bonds. Sitedirected mutagenesis suggested that the auto-ADP-ribosylation site occurred preferentially on the R7 residue, which is located in the region I of the ADP-ribosyltransferase family. After auto-ADP-ribosylation, NarE showed a reduction in ADP-ribosyltransferase activity, while NAD-glycohydrolase activity was increased. Overall, our findings provide evidence for a novel intramolecular mechanism used by NarE to regulate its enzymatic activities.—Picchianti, M., Del Vecchio, M., Di Marcello, F., Biagini, M., Veggi, D., Norais N., Rappuoli, R., Pizza, M., Balducci, E. Auto ADP-ribosylation of NarE, a Neisseria meningitidis ADP-ribosyltransferase, regulates its catalytic activities. FASEB J

    Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli ΔtolR IHE3034 Mutant

    Get PDF
    Extraintestinal pathogenic Escherichia coli are the cause of a diverse spectrum of invasive infections in humans and animals, leading to urinary tract infections, meningitis, or septicemia. In this study, we focused our attention on the identification of the outer membrane proteins of the pathogen in consideration of their important biological role and of their use as potential targets for prophylactic and therapeutic interventions. To this aim, we generated a DeltatolR mutant of the pathogenic IHE3034 strain that spontaneously released a large quantity of outer membrane vesicles in the culture supernatant. The vesicles were analyzed by two-dimensional electrophoresis coupled to mass spectrometry. The analysis led to the identification of 100 proteins, most of which are localized to the outer membrane and periplasmic compartments. Interestingly based on the genome sequences available in the current public database, seven of the identified proteins appear to be specific for pathogenic E. coli and enteric bacteria and therefore are potential targets for vaccine and drug development. Finally we demonstrated that the cytolethal distending toxin, a toxin exclusively produced by pathogenic bacteria, is released in association with the vesicles, supporting the recently proposed role of bacterial vesicles in toxin delivery to host cells. Overall, our data demonstrated that outer membrane vesicles represent an ideal tool to study Gram-negative periplasm and outer membrane compartments and to shed light on new mechanisms of bacterial pathogenesis

    Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

    Get PDF
    Background: Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods: Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results: CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions: When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform

    Identification of a novel zinc metalloprotease through a global analysis of clostridium difficile extracellular proteins

    Get PDF
    Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis

    Sortase A Substrate Specificity in GBS Pilus 2a Cell Wall Anchoring

    Get PDF
    Streptococcus agalactiae, also referred to as Group B Streptococcus (GBS), is one of the most common causes of life-threatening bacterial infections in infants. In recent years cell surface pili have been identified in several Gram-positive bacteria, including GBS, as important virulence factors and promising vaccine candidates. In GBS, three structurally distinct types of pili have been discovered (pilus 1, 2a and 2b), whose structural subunits are assembled in high-molecular weight polymers by specific class C sortases. In addition, the highly conserved housekeeping sortase A (SrtA), whose main role is to link surface proteins to bacterial cell wall peptidoglycan by a transpeptidation reaction, is also involved in pili cell wall anchoring in many bacteria. Through in vivo mutagenesis, we demonstrate that the LPXTG sorting signal of the minor ancillary protein (AP2) is essential for pilus 2a anchoring. We successfully produced a highly purified recombinant SrtA (SrtAΔN40) able to specifically hydrolyze the sorting signal of pilus 2a minor ancillary protein (AP2-2a) and catalyze in vitro the transpeptidation reaction between peptidoglycan analogues and the LPXTG motif, using both synthetic fluorescent peptides and recombinant proteins. By contrast, SrtAΔN40 does not catalyze the transpeptidation reaction with substrate-peptides mimicking sorting signals of the other pilus 2a subunits (the backbone protein and the major ancillary protein). Thus, our results add further insight into the proposed model of GBS pilus 2a assembly, in which SrtA is required for pili cell wall covalent attachment, acting exclusively on the minor accessory pilin, representing the terminal subunit located at the base of the pilus

    High Yield Production Process for Shigella Outer Membrane Particles

    Get PDF
    Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria

    Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus pneumoniae Pilus

    Get PDF
    Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Ã… resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility

    A Novel Phase Variation Mechanism in the Meningococcus Driven by a Ligand-Responsive Repressor and Differential Spacing of Distal Promoter Elements

    Get PDF
    Phase variable expression, mediated by high frequency reversible changes in the length of simple sequence repeats, facilitates adaptation of bacterial populations to changing environments and is frequently important in bacterial virulence. Here we elucidate a novel phase variable mechanism for NadA, an adhesin and invasin of Neisseria meningitidis. The NadR repressor protein binds to operators flanking the phase variable tract and contributes to the differential expression levels of phase variant promoters with different numbers of repeats likely due to different spacing between operators. We show that IHF binds between these operators, and may permit looping of the promoter, allowing interaction of NadR at operators located distally or overlapping the promoter. The 4-hydroxyphenylacetic acid, a metabolite of aromatic amino acid catabolism that is secreted in saliva, induces NadA expression by inhibiting the DNA binding activity of the repressor. When induced, only minor differences are evident between NadR-independent transcription levels of promoter phase variants and are likely due to differential RNA polymerase contacts leading to altered promoter activity. Our results suggest that NadA expression is under both stochastic and tight environmental-sensing regulatory control, both mediated by the NadR repressor, and may be induced during colonization of the oropharynx where it plays a major role in the successful adhesion and invasion of the mucosa. Hence, simple sequence repeats in promoter regions may be a strategy used by host-adapted bacterial pathogens to randomly switch between expression states that may nonetheless still be induced by appropriate niche-specific signals
    • …
    corecore