52 research outputs found
Recommended from our members
STAT signaling in the pathogenesis and treatment of myeloid malignancies
STAT transcription factors play a critical role in mediating the effects of cytokines on myeloid cells. As STAT target genes control key processes such as survival, proliferation and self-renewal, it is not surprising that constitutive activation of STATs, particularly STAT3 and STAT5, are common events in many myeloid tumors. STATs are activated both by mutant tyrosine kinases as well as other pathogenic events, and continued activation of STATs is common in the setting of resistance to kinase inhibitors. Thus, the targeting of STATs, alone or in combination with other drugs, will likely have increasing importance for cancer therapy
Antibacterial properties and mechanisms of action of sonoenzymatically synthesized lignin-based nanoparticles
In recent years, lignin has drawn increasing attention for different applications due to its intrinsic antibacterial and antioxidant properties, coupled with biodegradability and biocompatibility. However, chemical modification or combination with metals is usually required to increase its antimicrobial functionality and produce biobased added-value materials for applications wherein bacterial growth should be avoided, such as biomedical and food industries. In this work, a sonoenzymatic approach for the simultaneous functionalization and nanotransformation of lignin to prepare metal-free antibacterial phenolated lignin nanoparticles (PheLigNPs) is developed. The grafting of tannic acid, a natural phenolic compound, onto lignin was achieved by an environmentally friendly approach using laccase oxidation upon the application of high-intensity ultrasound to rearrange lignin into NPs. PheLigNPs presented higher antibacterial activity than nonfunctionalized LigNPs and phenolated lignin in the bulk form, indicating the contribution of both the phenolic content and the nanosize to the antibacterial activity. Studies on the antibacterial mode of action showed that bacteria in contact with the functionalized NPs presented decreased metabolic activity and high levels of reactive oxygen species (ROS). Moreover, PheLigNPs demonstrated affinity to the bacterial surface and the ability to cause membrane destabilization. Antimicrobial resistance studies showed that the NPs did not induce resistance in pathogenic bacteria, unlike traditional antibiotics.Peer ReviewedPostprint (published version
Antibacterial, antibiofilm, and antiviral farnesol-containing nanoparticles prevent Staphylococcus aureus from drug resistance development
Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound. The nanoformulation of farnesol improved its antibacterial properties and demonstrated complete eradication of Staphylococcus aureus within less than 3 h, without inducing resistance development, and was able to 100% inhibit the establishment of a drug-resistant S. aureus biofilm. These antibiotic-free nano-antimicrobials also reduced the mature biofilm at a very low concentration of the active agent. In addition to the outstanding antibacterial properties, the engineered nano-entities demonstrated strong antiviral properties and inhibited the spike proteins of SARS-CoV-2 by up to 83%. The novel FSL NPs did not cause skin tissue irritation and did not induce the secretion of anti-inflammatory cytokines in a 3D skin tissue model. These results support the potential of these bio-based nano-actives to replace the existing antibiotics and they may be used for the development of topical pharmaceutic products for controlling microbial skin infections, without inducing resistance development.Peer ReviewedPostprint (published version
MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism
Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an unmet need for improved therapies. Responses to standard cytotoxic therapy in AML are often transient because of the emergence of chemotherapy-resistant disease. The MUC1-C oncoprotein governs critical pathways of tumorigenesis, including self-renewal and survival, and is aberrantly expressed in AML blasts and leukaemia stem cells (LSCs). However, a role for MUC1-C in linking leukaemogenesis and resistance to treatment has not been described. In this study, we demonstrate that MUC1-C overexpression is associated with increased leukaemia initiating capacity in an NSG mouse model. In concert with those results, MUC1-C silencing in multiple AML cell lines significantly reduced the establishment of AML in vivo. In addition, targeting MUC1-C with silencing or pharmacologic inhibition with GO-203 led to a decrease in active ÎČ-catenin levels and, in-turn, down-regulation of survivin, a critical mediator of leukaemia cell survival. Targeting MUC1-C was also associated with increased sensitivity of AML cells to Cytarabine (Ara-C) treatment by a survivin-dependent mechanism. Notably, low MUC1 and survivin gene expression were associated with better clinical outcomes in patients with AML. These findings emphasize the importance of MUC1-C to myeloid leukaemogenesis and resistance to treatment by driving survivin expression. Our findings also highlight the potential translational relevance of combining GO-203 with Ara-C for the treatment of patients with AML
Metabolic networking in Brunfelsia calycina petals after flower opening
Brunfelsia calycina flowers change colour from purple to white due to anthocyanin degradation, parallel to an increase in fragrance and petal size. Here it was tested whether the production of the fragrant benzenoids is dependent on induction of the shikimate pathway, or if they are formed from the anthocyanin degradation products. An extensive characterization of the events taking place in Brunfelsia flowers is presented. Anthocyanin characterization was performed using ultraperfomance liquid chromatographyâquadrupole time of flightâtandem mass specrometry (UPLC-QTOF-MS/MS). Volatiles emitted were identified by headspace solid phase microextractionâgas chromatographyâmass spectrometry (HS-SPME-GC-MS). Accumulated proteins were identified by 2D gel electrophoresis. Transcription profiles were characterized by cross-species hybridization of Brunfelsia cDNAs to potato cDNA microarrays. Identification of accumulated metabolites was performed by UPLC-QTOF-MS non-targeted metabolite analysis. The results include characterization of the nine main anthocyanins in Brunfelsia flowers. In addition, 146 up-regulated genes, 19 volatiles, seven proteins, and 17 metabolites that increased during anthocyanin degradation were identified. A multilevel analysis suggests induction of the shikimate pathway. This pathway is the most probable source of the phenolic acids, which in turn are precursors of both the benzenoid and lignin production pathways. The knowledge obtained is valuable for future studies on degradation of anthocyanins, formation of volatiles, and the network of secondary metabolism in Brunfelsia and related species
TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups
Risk stratification is critical in the care of patients with myelodysplastic syndromes (MDS). Approximately 10% have a complex karyotype (CK), defined as more than two cytogenetic abnormalities, which is a highly adverse prognostic marker. However, CK-MDS can carry a wide range of chromosomal abnormalities and somatic mutations. To refine risk stratification of CK-MDS patients, we examined data from 359 CK-MDS patients shared by the International Working Group for MDS. Mutations were underrepresented with the exception of TP53 mutations, identified in 55% of patients. TP53 mutated patients had even fewer co-mutated genes but were enriched for the del(5q) chromosomal abnormality (pâ10%), abnormal 3q, abnormal 9, and monosomy 7 as having the greatest survival risk. The poor risk associated with CK-MDS is driven by its association with prognostically adverse TP53 mutations and can be refined by considering clinical and karyotype features
Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global public health crisis. Multiple observations indicate poorer post-infection outcomes for patients with cancer than for the general population. Herein, we highlight the challenges in caring for patients with acute leukaemias and myeloid neoplasms amid the COVID-19 pandemic. We summarise key changes related to service allocation, clinical and supportive care, clinical trial participation, and ethical considerations regarding the use of lifesaving measures for these patients. We recognise that these recommendations might be more applicable to high-income countries and might not be generalisable because of regional differences in health-care infrastructure, individual circumstances, and a complex and highly fluid health-care environment. Despite these limitations, we aim to provide a general framework for the care of patients with acute leukaemias and myeloid neoplasms during the COVID-19 pandemic on the basis of recommendations from international experts
Zinc Sensing Receptor Signaling, Mediated by GPR39, Reduces Butyrate-Induced Cell Death in HT29 Colonocytes via Upregulation of Clusterin
Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn2+ sensing G-protein coupled receptor (ZnR) that activates Ca2+ signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn2+, by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca2+ release and Zn2+-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na+/H+ exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na+/H+ exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn2+-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn2+, acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes
- âŠ