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Abstract

Acute myeloid leukaemia (AML) is an aggressive haematological malignancy with an

unmet need for improved therapies. Responses to standard cytotoxic therapy in

AML are often transient because of the emergence of chemotherapy-resistant dis-

ease. The MUC1-C oncoprotein governs critical pathways of tumorigenesis, includ-

ing self-renewal and survival, and is aberrantly expressed in AML blasts and

leukaemia stem cells (LSCs). However, a role for MUC1-C in linking leukaemogene-

sis and resistance to treatment has not been described. In this study, we demon-

strate that MUC1-C overexpression is associated with increased leukaemia initiating

capacity in an NSG mouse model. In concert with those results, MUC1-C silencing

in multiple AML cell lines significantly reduced the establishment of AML in vivo. In

addition, targeting MUC1-C with silencing or pharmacologic inhibition with GO-203

led to a decrease in active b-catenin levels and, in-turn, down-regulation of survivin,

a critical mediator of leukaemia cell survival. Targeting MUC1-C was also associated

with increased sensitivity of AML cells to Cytarabine (Ara-C) treatment by a sur-

vivin-dependent mechanism. Notably, low MUC1 and survivin gene expression were

associated with better clinical outcomes in patients with AML. These findings

emphasize the importance of MUC1-C to myeloid leukaemogenesis and resistance

to treatment by driving survivin expression. Our findings also highlight the potential

translational relevance of combining GO-203 with Ara-C for the treatment of

patients with AML.
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1 | INTRODUCTION

Acute myeloid leukaemia (AML) is a lethal haematological malignancy

characterized by the emergence of a clonal population of primitive mye-

loid cells that exhibit a pattern of dysregulated growth and self-renewal.1

Responses to cytotoxic agents, such as Cytarabine (Ara-C) and daunoru-

bicin, are often observed in patients with AML; however, disease relapse

is common because of the emergence of chemotherapy-resistant dis-

ease.2 In this context, progression of AML is associated with genetic and

epigenetic changes that promote aggressiveness and resistant disease.

There is a significant need to identify critical pathways that govern leu-

kaemic progression and offer potential targets for novel therapeutics.

Mucin 1 (MUC1) is a heterodimeric protein that is aberrantly

expressed in cancer cells, including AML blasts. The oncogenic MUC1-

C subunit drives critical hallmarks of malignant cells, including cell pro-

liferation, resistance to apoptosis, self-renewal, and tissue invasion.3-6

Intriguingly, we have demonstrated that MUC1 is uniquely expressed

by AML stem cells as compared to normal haematopoietic stem cells.7

Primary AML cells expressing high levels of MUC1 efficiently induce

leukaemic engraftment in a xenogeneic murine model, whereas MUC1

low expressing cells isolated from bone marrow of patients with active

AML engraft normal haematopoietic elements.

The oncogenic function of the transmembrane MUC1-C subunit

is dependent on the formation of homodimers, which are required

for translocation to the nucleus and interactions with downstream

effectors.8-11 The MUC1-C cytoplasmic domain is phosphorylated by

c-Src and receptor tyrosine kinases, and interacts with effectors,

such as b-catenin and NF-jB, that have been linked to transforma-

tion. In AML, MUC1-C associates with the b-catenin/TCF4 complex,

which regulates cell proliferation and differentiation.5,12 Accumula-

tion of b-catenin in the cytoplasm promotes its translocation to the

nucleus as a cofactor for transcription factors of the T-cell factor

(TCF) family and activates the transcription of Wnt/b-catenin target

genes. MUC1-C facilitates the nuclear translocation of dephosphory-

lated active b-catenin that is necessary for inducing the expression

of cyclin D1, MYC and survivin, a negative regulator of apoptosis.13-15

Survivin also plays a role in the proliferation and survival of leukae-

mia induced by the internal tandem duplication of FLT3.16 Moreover,

survivin is highly expressed in AML progenitor cells and is predictive

of poor clinical outcomes in patients with AML.17

In this study, we demonstrate that MUC1-C signalling is critical

for leukaemia progression and sensitivity to the cytotoxic agent

Ara-C by a survivin-mediated mechanism. These findings emphasize

the importance of MUC1-C as a target in AML and support target-

ing of MUC1-C with GO-203 in combination with Ara-C for the

treatment of patients with AML.

2 | MATERIALS AND METHODS

2.1 | AML patient derived cells and cell lines

AML cell lines THP1, MV4-11 and MOLM-14 were purchased

from ATCC and cultured in RPMI 1640 media (Cellgro, Manassas,

VA) supplemented with heat-inactivated 10% Fetal Bovine Serum

(Sigma, St. Louis, MO) and 100 IU/mL penicillin, and 100 lg/mL

streptomycin (Cellgro, Manassas, VA). MOLM-14 and THP1 cells

were transduced with a lentiviral vector expressing a MUC1

shRNA (MUC1shRNA; Sigma) or with a scrambled control shRNA

vector (CshRNA; Sigma).18 Alternatively, MUC1 knockdown was

achieved using CRISPR/Cas9 technology as described.19 For over-

expression of MUC1-C, cells were transduced with lentiviruses

expressing pHR-CMV-GFP (vector) or MUC1-C (MUC1-C). Primary

cells were transduced with help of Transdux transduction reagent

(System Biosciences Cat# LV850A-1) using a previously

concentrated viral particles, which were obtained with help of

Lenti-X concentrator (clontech Cat #631231). For qRT-PCR

analysis the total RNA was isolated from above transduced cells,

using RNAeasy kit (Qiagen Cat#74104) and cDNA synthesis was

done with 2 lg of total RNA using High Capacity RNA

transcription kit (Thermo Fisher Cat#4368814). The cDNA was

diluted further for Real Time PCR using SYBR green master mix

(Applied Biosystem Cat#4368708) in applied biosciences Real time

PCR machine (AB6000). For the CRISPR edited cell line, sgRNAs

targeting the first exon of the MUC1 gene were cloned into a

lenti-plasmid (Genome Engineering Production Group, Harvard

Medical School). MOLM-14 cells were transduced with viral

vector containing the lenti-CRISPR plasmid and successfully

transduced clones were selected for by limiting dilution and main-

tained in 2 lg/mL Puromycin (Sigma, St. Louis, MO). MCF-7

breast cancer cell line was used as positive control for MUC1

expression.

Bone marrow aspirates samples were obtained from patients

with newly diagnosed AML as per an institutionally approved proto-

col. Mononuclear cells were isolated by ficoll density centrifugation.

For assessment of active b-catenin, CD34+ cells were isolated using

the MiniMacs CD34 cell isolation kit (Miltenyi Biotec). The bulk AML

cell population was used for in vivo experiments. Cells were treated

with the MUC1-C inhibitor, GO-203, and as a control, the CP-2

peptide.8

2.2 | Quantitative RT PCR

Quantitative real-time (RT)-PCR was performed on cDNA synthe-

sized from total cell RNA using the Thermoscript RT-PCR system

(Invitrogen). The SYBR green qPCR assay (Applied Biosystems) was

used with diluted cDNA. The samples were amplified with the ABI

Prism 7000 Sequence Detector (Applied Biosystems). Forward and
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reverse primers are Survivin Fwd (50- TAATACCAGCACTTTGG

GAGG-30) Rev (50- GGCTCTTTCTCTGTCCAGTTTC-30). MUC1 Fwd

(50- TACCGATCGTAGCCCCTATG -30), Rev (50-CTCACCAGCCCAAA

CAGG-30) and GAPDH Fwd (50- CCATGGAGAAGGCTGGGG-30) Rev

(50- CAAAGTTGTCATGGATGACC-30).

2.3 | Leukaemia engraftment in NSG mice

Bone marrow derived AML cells and AML cell lines were inocu-

lated retro-orbitally into sublethally irradiated (300 rads) NOD-

SCID IL2Rgammanull (NSG; 6 week old female) mice (Jackson

Laboratories). After sacrifice, bone marrow and spleen cells were

harvested and red blood cells (RBC) were removed using RBC

lysis buffer (Sigma). Human AML engraftment was detected by

staining cells with PE-conjugated anti-hCD45 and, as a control,

FITC-conjugated antimouse mCD45. In certain experiments, the

cells were also analysed for hCD34, hCD11C, hCD19 or hCD20

by multichannel flow cytometry using CellQuest, Diva or Kaluza

software. In order to confirm AML blast morphology, cytospins

were made from BM cells. The cells were then fixed in

methanol and stained using the standard Wright Giemsa proto-

col. The cells were visualized with contrast light microscopy

(Olympus AX70 microscope) using an oil immersion objective

lens (9100).

2.4 | Immunoblot analysis

Cell lysates were prepared as described.20 Soluble proteins were

analysed by immunoblotting with anti-MUC1-C (ThermoScientific),

anti-active b-catenin (Cell Signaling Technologies), anti-survivin (Cell

Signaling Technologies) and anti-b-actin (Sigma). Antigen-antibody

complexes were visualized by enhanced chemoluminescence (ECL;

Amersham Biosciences). Densitometry analysis was performed used

image J software.

2.5 | Analysis of intracellular protein expression by
flow cytometry

For b-catenin expression - isolated leukaemia CD34+ progenitors

were permeabilized with a saponin-based reagent (eBioscience).

The cells were then stained with purified anti-active b-catenin (Mil-

lipore) for 1 hour followed by secondary labelling of the cells with

FITC-conjugated goat antimouse IgG and then analysis by flow

cyometry. For survivin expression - AML cells underwent fixation

and permeabilization using Transcription Factor Staining Buffer Set

(eBioscience) and then stained with 0.5 lg PE-conjugated anti-

survivin STLALYV monoclonal antibody (Thermo Fisher). For Ki67

expression - AML cells were permeabilized with a saponin-based

reagent (eBioscience). The cells were then incubated with Pacific

Blue-conjugated anti-Ki67 monoclonal antibody (BioLegend) at

room temperature in the dark for 30 minutes. Purified Mouse

IgG1, j was used as isotype control. The cells were then analysed

using the Gallios flow cytometer.

2.6 | Cytotoxicity assays

AML cells were seeded in white flat-bottom 96-well plates at

10 000 cells/well. At 48 hours of treatment, cell viability was

assessed using the CellTiter-Glo� (CTG) Luminescent Cell Viability

Assay. Raw luminescence values were obtained from each well using

Infinite M200 Pro luminometer (Tecan). Drug synergy was assessed

using CompuSyn software program in which combination index (CI)

<0.7 considered as synergistic and >0.7 considered as antagonistic.

In addition, dead cells were detected by addition of 0.1 mg/mL pro-

pidium iodide (PI) and apoptotic cells were detected by Annexin V

(FITC) apoptosis detection kit (BD Biosciences) using flow cytometry.

2.7 | Microarray gene expression data

Gene expression and clinical data were analysed for previously

described cohort of adult AML patients: dataset of 260 patients with

diverse cytogenetic and molecular abnormalities described by Valk

et al Gene expression profiles of AML patients were downloaded

from NCBI GEO dataset (https://www.ncbi.nlm.nih.gov/geo, acces-

sion number GSE1159). Probe intensity values were normalized

using the bioconductor “affy” package using R version 3.3.1 for the

probe of interest. The normalization is based on Affymetrix MAS5.0

with the absolute scale factor (sc) of 100. Patients were stratified

dichotomously based on an optimal threshold of MUC1 and BIRC5

expression. Overall survival of both low and high expression groups

were examined using “survival” package using R version 3.3.1.

2.8 | Statistical analysis

Data of two tested groups were compared using the Student’s t-test.

P-Values less than. 05 were considered significant.

3 | RESULTS

3.1 | MUC1-C overexpression leads to increased
leukaemogenicity in NSG mice

To investigate the role of MUC1-C in leukaemia induction in vivo,

MUC1-C was stably overexpressed in MOLM-14 AML cells as com-

pared to that in cells transduced with GFP vector (Figure 1A).

MOLM-14/MUC1-C and MOLM-14/vector cells were inoculated

into sublethally irradiated NSG mice at 1000 cells/mouse, a dose

characteristically insufficient to support rapid AML engraftment. At

21 days following inoculation, the mice were killed and bone marrow

(BM) cells were analysed for the engraftment of human CD45+ AML

cells. The results demonstrated significantly greater engraftment of

human CD45+ cells in mice inoculated with MOLM-14/MUC1-C

versus MOLM-14/vector cells (Figure 1B) with mean levels of AML

engraftment of 31.1% and 1% respectively (n = 3; P = .02). MUC1-C

was also overexpressed in primary AML cells isolated from bone

marrow of AML patient at diagnosis. NSG mice were inoculated with

5 9 105 AML/MUC1-C or AML/vector cells. The mouse bone
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https://www.ncbi.nlm.nih.gov/geo


marrow cells were analysed 90 days following inoculation and

showed hCD45+ cells engraftment of 72% and 29% for AML/

MUC1-C and control AML/vector cells respectively (Figure 1C, D).

Furthermore, cytospins prepared from bone marrow cells of mice

inoculated with AML/MUC1-C cells showed monomorphic blast cells

consistent with AML. In contrast, bone marrow cells isolated form

mice inoculated with AML/vector cells demonstrated normal mouse

bone marrow cell morphology typical to NSG mice, and no evidence

of human AML engraftment (Figure 1E). Of note, MUC1-C overex-

pression did not lead to increase in expression of proliferation mar-

ker Ki67 (Figure S2A) in MOLM14 AML cells.

3.2 | MUC1-C silencing in AML leads to loss of
leukaemia initiating capacity in NSG mice

To further study the significance of MUC1-C expression on engraft-

ment of AML in vivo, MUC1-C was silenced in MOLM-14 cells using

a lentiviral shRNA hairpin against MUC1-C (MUC1shRNA). MOLM-14

cells were also infected with a control shRNA (CshRNA) (Figure 2A).

MOLM-14/WT, MOLM-14/MUC1shRNA and MOLM-14/CshRNA

cells (10 9 103 cells/mouse) were injected retro-orbitally into sub-

lethally irradiated NSG mice in cohorts of eight mice/group. The ani-

mals were killed at day 14 following inoculation for analysis of

leukaemia establishment. The mice inoculated with MOLM-14/WT

cells and MOLM-14/CshRNA cells developed massive bone marrow

infiltration with leukaemia cells that was observed in 7/8 of recipient

mice (Figure 2B). Flow cytometric analysis of the bone marrow of

mice revealed mean involvement of 54% and 48% with human

CD45+ leukaemia cells in the MOLM-14/WT and MOLM-14/CshRNA

groups respectively (Figure 2C). Remarkably, the 8 mice injected with

MOLM-14/MUC1shRNA cells showed minimal evidence of leukaemic

engraftment (Figure 2C). Thus, analysis of these mice revealed mean

AML involvement of only 6% of the bone marrow cells, which was sig-

nificantly lower than that observed in the MOLM-14/WT and

MOLM-14/CshRNA groups (P = .003 and P = .01 respectively; Fig-

ure 2C). Interestingly, MUC1 silencing led to a significant decrease in

Ki67 expression in MOLM-14/MUC1shRNA cells compared to control

(Figure S2B) indicating decrease in proliferative capacity.

To confirm these findings, NSG mice were similarly inoculated

with THP1 cells stably expressing the MUC1shRNA or the CshRNA

(Figure 2D). In 3 independent experiments, a significant decrease in

leukaemic engraftment was observed for THP1/MUC1shRNA, as

compared to THP1/CshRNA, cells (Figure 2E, F).

3.3 | MUC1 silencing leads to reduced nuclear
translocation of b-catenin and decreased survivin
expression

To evaluate the mechanism by which MUC1-C-mediated signalling

promotes leukaemogenicity, we assessed the effect of silencing

F IGURE 1 MUC1-C overexpression leads to increased leukaemogenicity in NSG mice. MUC1-C was overexpressed in MOLM14 cells. A,
The cells were harvested and lysates were immunoblotted for the expression of MUC1-C using anti-CT2 monoclonal antibody. MCF7 cells
were used as positive control. The cells were then inoculated into sublethally irradiated NSG mice at a low dose of 1000 cells/mouse. 21 d
post inoculation the mice were killed and BM cells were isolated and analysed for human CD45 expression. B, The results are expressed as
percentages of hCD45+ leukaemia cells in the BM of individual mice inoculated with AML cells with MUC1-C overexpression and control
vector. The horizontal bar represents the mean percentage of hCD45+ cells (n = 3; P < .05). C, MUC1-C was overexpressed in AML cells
obtained from a BM aspirate of a patient with AML. The cells were then inoculated into sub-lethally irradiated NSG mice 5 9 105 cells/mouse.
Ninety days post inoculation the mice were killed and BM cells were isolated and analysed for human CD45 expression. The results are
expressed as percentages of hCD45+ leukaemia cells in the BM of individual mice inoculated with AML cells with MUC1-C overexpression
and control vector. The horizontal bar represents the mean percentage of hCD45+ cells (n = 3; P < .05). D, Representative FACS plots of mice
inoculated with MUC1-C overexpressed and control patient derived AML cells. E, Cytospins were prepared from bone marrow cells isolated
from mice inoculated with MUC1-C overexpressed AML cells and control cells. The cytospins were then stained using standard Giemsa
staining protocol. BM morphology of representative mice is shown
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MUC1-C on downstream effectors important for leukaemic survival.

Specifically, we examined the effect of MUC1-C silencing on the

expression of survivin, a target gene of the WNT/b-catenin/TCF

pathway, which is critical for leukaemia survival, resistance to apop-

tosis and disease progression.14,16,17,21-30

Analysis of MOLM-14/CshRNA cells using immunoflourescent

imaging demonstrated co-localization of MUC1-C and b-catenin in

the nucleus. In contrast, silencing MUC1-C in MOLM-14/

MUC1shRNA cells was associated with a significant decrease in

nuclear localization of MUC1-C and b-catenin (Figure 3A).

The MUC1-C cytoplasmic domain contains a CQC motif that is

necessary and sufficient for MUC1-C homodimerization and func-

tion31-33 (Figure 3B). Accordingly, we developed a cell-penetrating

peptide, designated GO-203, which interacts with the CQC motif

and blocks MUC1-C homodimerization32,33 (Figure 3B). The inactive

CP-2 peptide was synthesized as a control32,33 (Figure 3B). Notably

and in concert with the function of MUC1-C in stabilizing

b-catenin,12 we found that targeting MUC1-C with GO-203 in

CD34+ AML cells is associated with marked down-regulation of

active b-catenin as determined by flow cytometry (Figure 3C) and

immunoblotting (Figure 3D).

We then examined the effect of MUC1-C silencing on the

expression of survivin, a downstream target of the b-catenin/TCF4

pathway. Survivin inhibits caspase activation, thereby leading to the

negative regulation of apoptosis and promotion of leukaemia cell

survival.26 Significantly, MUC1-C silencing in MOLM-14/

MUC1shRNA and THP1/MUC1shRNA cells resulted in the down-

regulation of survivin expression as demonstrated by decrease in

both survivin mRNA (Figure 4A, B) and protein (Figure 4C) levels. In

concert with these findings, overexpression of MUC1-C was associ-

ated with increases in survivin mRNA levels as demonstrated in two

samples obtained from bone marrows of patients with newly diag-

nosed AML (Figure 4D, E, Figure S2C) and an additional immortal-

ized AML cell line MV4-11/MUC1-C (Figure 4F). Furthermore, flow

F IGURE 2 MUC1-C silencing in MOLM14 and THP1 cells leads to loss of leukaemia initiating capacity in NSG mice. MUC1-C was silenced
in MOLM-14 and THP1 AML cells using lentiviral infection with a shRNA hairpin sequence against MUC1-C. Wild-type MOLM-14 (wt) cells and
MOLM-14 cells infected with control shRNA (control) were used as controls. A, MOLM14 cells were harvested and lysates were immunoblotted
for the expression of MUC1-C using anti-CT2 monoclonal antibody. The cells were then inoculated into sub-lethally irradiated NSG mice
10 9 103/mouse. 14 d post inoculation, the mice were killed and BM cells were isolated and analysed for hCD45 expression. (B) The results are
expressed as percentages of hCD45+ leukaemia cells in the BM of individual mice in the MUC1 silenced and the control groups. The horizontal
bar represents the mean percentage of hCD45+ cells. C, FACS plots of BM cells analysed for AML engraftment of representative mice. MUC1-C
was silenced in THP1 AML cells using lentiviral infection with a shRNA hairpin sequence against MUC1-C. THP1 cells infected with control
shRNA were used as controls. D, The cells were harvested and lysates were immunoblotted for the expression of MUC1-C using anti-CT2
monoclonal antibody. E, THP1 cells were inoculated into sub-lethally irradiated NSG mice 500 9 103/mouse. 30 d post inoculation the mice
were killed and BM cells were isolated and analysed for hCD45 expression. The results are expressed as percentages of hCD45+ leukaemia cells
in the BM of individual mice in the MUC1 silenced and the control groups. The horizontal bar represents the mean percentage of hCD45+ cells.
One of three independent experiments is shown. F, FACS plots of BM cells analysed for AML engraftment of representative mice
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cytometric analysis of MV4-11/MUC1-C cells confirmed increase in

survivin expression in the protein level (Figure S2C).

3.4 | Survivin overexpression in MUC1 silenced
AML cells leads to enhanced leukaemia induction

We next sought to investigate whether the effects of MUC1 silenc-

ing on leukaemogenicity is mediated by the down-regulation of sur-

vivin. In these studies, we first investigated MOLM-14 cells with a

knockout of the MUC1 gene using a CRISPR/Cas9 approach (Fig-

ure 5A). Consistent with the above findings, down-regulation of

MUC1-C in the MOLM-14/CRISPR cells was associated with sup-

pression of survivin expression (Figure 5A). We next overexpressed

survivin in the CRISPR cells using lentiviral transduction (Figure 5B,

Figure S2D). NSG mice were then inoculated with 10 9 103

MOLM14/CRISPR cells that were transduced with either survivin

(CRISPR/survivin) or a control vector (CRISPR/vector). The mice

were killed 21 days following inoculation, and the AML burden in

F IGURE 3 MUC1 silencing leads to reduced b-catenin levels and its decreased translocation to the nucleus. A, MUC1-C was silenced in
MOLM-14 AML cells using lentiviral shRNA hairpin against MUC1-C. As a control, MOLM -14 cells were infected with control shRNA. For
immunofluorescence evaluation of co-locolization of MUC1 and b-catenin to the nucleus, cytospins of MUC1-C silenced and control MOLM-
14 cells were prepared and stained with antibodies against b-catenin (red) and MUC1-C (green). DAPI was used to visualize nuclei (blue).
Images were acquired with a confocal Microscope (n = 3). B, Schematic representation of the MUC1-C subunit. MUC1-C consists of a 58 aa
non-shed extracellular domain (ED), a 28 aa transmembrane domain (TM) and a 72 aa cytoplasmic domain (CD). The MUC1-C cytoplasmic
domain contains a CQC motif that is necessary for MUC1-C homodimerization, localization to the nucleus and oncogenic function. The MUC1-
C CQC motif is the target of the GO-203 inhibitor. C, CD34+ cells isolated from three patients with AML were treated with 2.5 lmol/L GO-
203 MUC1-C inhibitor or CP-2 control every 24 h for 3 d. Treated cells were harvested and analysed by flow cytometry for active
dephosphorylated b-catenin expression as shown in a representative experiment and summary of 3 independent experiments (mean � SD). D,
Lysates were immunoblotted for the expression of active b-catenin using an anti-dephospho-b-catenin monoclonal antibody. b-actin was used
as a control. A representative example of each is shown (n = 3)
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the bone marrow was assessed by the detection of human CD45+

cells using flow cytometric analysis. Consistent with our previous

results, 2/5 mice showed minimal AML engraftment in the cohort of

mice inoculated with MOLM14/CRISPR/vector cells, with mean

levels of 1.33% hCD45+ cells in the bone marrow (Figure 5C, D). In

contrast, survivin overexpression in MOLM-14/CRISPR/survivin cells

led to increased AML induction with 4/5 mice having detectible dis-

ease in the bone marrow and mean levels of 5.3% blast involvement

(Figure 5C, D).

These results were confirmed using THP1/MUC1shRNA cells

(Figure 5E, Figure S2D). Inoculation of mice with MUC1shRNA/Vec-

tor cells did not lead to leukaemia induction. However, in experi-

ments with the MUC1shRNA/surviving cells, 3/6 mice showed AML

engraftment with mean levels of 2% blast involvement (Figure 5F, G).

These findings indicate that MUC1 silencing leads to

decreases in leukaemogenicity, at least in part by survivin down-

regulation.

3.5 | MUC1-C inhibition leads to increased
susceptibility to cytarabine via down-regulation of
survivin

We further sought to determine whether targeting MUC1-C with the

resultant decrease in survivin levels would confer increased suscepti-

bility to Ara-C. In this way, MOLM-14 cells were treated with

increasing doses of Ara-C alone, GO-203 alone or the combination of

both agents. Assessment of cell viability after 48 hours demonstrated

dose-dependent cytotoxicity for each agent alone (Figure 6A, B).

Interestingly, exposure of MOLM-14 cells to the combination of

GO-203 and Ara-C for 48 hours showed a statistically significant

reduction in cell viability compared to that obtained with each agent

alone (Figure 6C). These findings were further confirmed using

Annexin/PI staining (Figure 6D). Similar results were obtained with

MV4-11 AML cells (Figure S1A-C), indicating that the GO-203/Ara-

C combination is synergistic. To further assess this interaction, we

F IGURE 4 MUC1-C levels regulate survivin expression. MUC1-C was silenced in MOLM-14 and THP1 AML cells a using lentiviral shRNA
hairpin against MUC1-C. As a control, the cells were infected with control shRNA. (A,B) A representative experiment showing MUC1-C and
survivin mRNA levels, evaluated using qPCR. Each condition was performed in triplicate. (C) MOLM14 cells were harvested and lysates were
immunoblotted for the expression of survivin using anti-survivin monoclonal antibody (n = 2). (D,E) MUC1-C was overexpressed in bone
marrow cells isolated from patients with AML. Control cells were infected with a vector containing the GFP gene. Survivin expression was
evaluated using qPCR (n = 3). (F) MUC1-C was over-expressed in MV411 AML cells, control cells were infected with vector containing the
GFP gene. MUC1-C and survivin mRNA levels were evaluated using qPCR. Each condition was performed in triplicate
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employed the combination index (CI) method using CompuSyn to

calculate degrees of synergism in drug combinations.34,35 Based on

the validated CI index, treatment of MOLM-14 and MV4-11 cells

with GO-203 in combination with Ara-C resulted in synergistic killing

with CI values of 0.29 and 0.26 respectively.

Furthermore, treatment of tumour cells obtained from three

patients with AML at diagnosis using combination of AraC and

MUC1 inhibitor GO-203, led to a similar strong synergistic response

(CI 0.28) as demonstrated in representative Figure 6E.

To lend further support for the premise that targeting MUC1-C

is synergistic with Ara-C, MOLM-14/WT and MOLM-14/CRISPR

cells were independently treated with increasing doses of Ara-C.

Significantly, the MOLM-14/CRISPR cells exhibited greater

decreases in cell viability as compared to that obtained for MOLM-

14/WT cells at 48, 72 and 96 hours of treatment (Figure 6F), con-

firming that MUC1-C targeting significantly increases AML cell

susceptibility to Ara-C.

To examine whether the observed effect of MUC1 inhibition on

susceptibility of AML cells to cytotoxic injury is conveyed via sur-

vivin-mediated mechanism, survivin was overexpressed in MOLM-

14/CRISPR AML cells using lentiviral transduction (MOLM-14/

CRISPR/Survivin). MOLM14/CRISPR cells transduced with GFP con-

trol vector were used as a control (MOLN-14/CRISPR/Vector). GFP

cells were purified using flowcytometric sorting and then treated

F IGURE 5 Survivin overexpression in MUC1 silenced AML cells leads to enhanced leukaemia induction. MUC1-C gene knockdown of the
AML cell line, MOLM-14, was generated using CRISPR/Cas9 technology, MOLM14/WT cells were used as control. (A) Lysates were
immunoblotted for the expression of MUC1-C and survivin, b-actin was used as a control. Subsequently, GFP tagged survivin or control vector
genes were overexpressed in the CRISPR AML cells using lentiviral transduction. GFP+ cells were then isolated using flow cytometric sorting
and (B) underwent Western blot analysis for survivin expression with GAPDH used as a control. 10 9 103 cells/mouse were inoculated into
NSG mice using retro-orbital injections. 21 d following inoculation, bone marrow cells were harvested from and analysed for the engraftment
of human CD45 AML cells using flow cytometry. (C) The results are expressed as percentages of hCD45+ leukaemia cells in the BM of
individual mice in the CRISPR/Survivin group and the control group. The horizontal bar represents the mean percentage of hCD45+ cells. (D)
FACS plots of BM cells analysed for AML engraftment of representative mice. MUC1-C was silenced in THP1 AML cells using lentiviral
infection with a shRNA hairpin sequence against MUC1-C. Subsequently, GFP tagged survivin or control vector genes were overexpressed in
these cells using lentiviral transduction. GFP+ cells were then isolated using flow cytometric sorting and (E) underwent Western blot analysis
for survivin expression. b-actin was used as a control. Subsequently, 10 9 103 cells/mouse were inoculated into NSG mice using retro-orbital
injections for 21 d. Bone marrow cells were then analysed for AML engraftment as described above. (F) The results are expressed as
percentages of hCD45+ leukaemia cells in the BM of individual mice in the MUC1shRNA/Survivin group and the control group. The horizontal
bar represents the mean percentage of hCD45+ cells. (G) FACS plots of BM cells analysed for AML engraftment of representative mice
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with increased doses of AraC. Cell viability was assessed 48 hours

after treatment. Indeed, susceptibility of MOLM-14 cells to Ara-C

following MUC1 silencing was shown to be reversed with survivin

overexpression (Figure 6G).

3.6 | Low MUC1 and survivin expression in human
AML is associated with increased overall survival

We hypothesized that increased MUC1 expression on human AML

contributes to pathogenesis and predicted that AML with lower

expression of MUC1 would be associated with better clinical out-

comes. Consistent with this hypothesis, analysis of previously

described group of 260 adult AML patients with diverse cytoge-

netic and molecular abnormalities36 revealed that a dichotomous

stratification of patients into low MUC1 and high MUC1 expres-

sion groups was associated with a significantly decreased risk of

death in the low expressing group (P = .04) as demonstrated in

Figure 7A. Similarly, association of survivin (BIRC5) expression and

clinical outcomes was assessed. The data demonstrated that low

survivin expression was correlated with statistically significant pro-

longed overall survival in this group of AML patients (P = .01; Fig-

ure 7B). Interestingly, low expression of both MUC1 and survivin

led to better clinical outcomes with higher statistical significance

(P = .001; Figure 1C).

F IGURE 6 MUC1 inhibition leads to increased susceptibility to cytarabine. MOLM14 AML cells were treated with increasing doses of
MUC1 peptide inhibitor, G0-203, or cytarabine (Ara-C) for 48 h. (A,B) Cell viability was evaluated using an ATP-based assay as demonstrated
in a representative experiment (n = 3, each experiment performed in triplicates). (C) Cell viability was assessed after 48 h treatment of
MOLM14 AML cells with a combination of G0-203 (2 lmol/L) and Ara-C (125 nmol/L) as opposed to treatment with each agent alone. (Each
experiment was performed in triplicates; n = 3). (D) The results were further confirmed using Annexin/PI evaluation. (E) AML cells were
obtained from patients with AML at diagnosis. The cells were then treated with MUC1 peptide inhibitor, G0-203, or cytarabine (Ara-C) for
48 h. Cell viability was assessed after 48 h treatment of AML cells with a combination of G0-203 (2 lmol/L) and Ara-C (50 nmol/L) as
opposed to treatment with each agent alone (each experiment was performed in triplicates; n = 3). (F) The MOLM-14 CRISPR and wild-type
(WT) cell lines were independently treated with increasing doses of cytarabine. Cell viability was evaluated utilizing an ATP-based
luminescence assay (CTG, Promega) as compared to the MOLM-14 WT cell line at 48,72 and 92 h after treatment. (G) MOLM-14/CRISPR
cells were transduced with either survivin GFP or control GFP vectors. GFP positive cells were then isolated using flow cytometric sorting and
incubated with indicated doses of AraC for 48 h. Cell viability was then assessed as described above
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These finding are consistent with previously published survival

analysis using TCGA database demonstrating prolonged survival in

AML patients with lower survivin expression.37 Furthermore, our

analysis of this database of 168 adult AML patients confirmed that

patients with low MUC1 expression showed significantly prolonged

overall survival (P = .02, data not shown).

4 | DISCUSSION

AML is a lethal haematological malignancy characterized by matura-

tion arrest; the capacity for self-renewal and autonomous cell prolif-

eration, resistance to apoptosis and increased resistance to cytotoxic

injury.1,38-40 AML stem cells are intrinsically resistant to cytotoxic

stress because of a low proliferative rate and a multidrug-resistant

phenotype.41,42 Clonal plasticity and evolution further results in the

emergence of heightened levels of chemotherapy resistance con-

tributing to the nature of disease recurrence following chemother-

apy. Defining critical pathways mediating leukaemic transformation,

disease evolution and therapeutic resistance is crucial to enhance

the biological understanding of the disease and to develop more

effective targeted therapies.

MUC1-C is an oncogenic protein aberrantly expressed in solid

tumour and haematological malignancies that is known to promote

malignant transformation, tissue invasion, autonomous self-renewal

and resistance to apoptosis.3,5,8,12,31,43 MUC1 is overexpressed in

majority of patients with AML.4,7 Of note, we have demonstrated

that MUC1 is uniquely expressed by AML stem cells as compared to

normal haematopoietic stem cells. In addition, the subset of cells

expressing high levels of MUC1 in primary AML samples are highly

efficient in generating leukaemic engraftment in a xenogeneic NSG

mouse model,7 indicating that MUC1-C promotes self-renewal.

In this study, we have demonstrated the importance of MUC1-C

for maintenance of the malignant AML phenotype. Overexpression

of MUC1-C results in marked enhancement of the capacity of

human leukaemia cell lines and patient derived primary AML cells to

engraft disease in a xenogeneic murine model. Consistent with these

findings, silencing of MUC1-C in AML cells abrogates their capacity

for leukaemia induction.

Our studies have also assessed the role of MUC1-C mediated

signalling on the b-catenin/WNT pathway and its role in inducing

survivin, a downstream effector critical for leukaemia biology.17 The

MUC1-C cytoplasmic domain has been shown to interact with b-

catenin in several carcinoma cell, but not AML, models.12 MUC1-C

associates with the b-catenin/T-cell factor 4 (TCF4) complex, which

regulates cell differentiation, proliferation and apoptosis.5 Accumula-

tion of b-catenin in the cytoplasm favours its translocation to the

nucleus as a cofactor for TCF family transcription factors and

thereby activates the transcription of Wnt/b-catenin target genes.44

The MUC1-C oncoprotein is known to facilitate the nuclear translo-

cation of active b-catenin to the nucleus, necessary for downstream

signalling pathways.12,45,46 Here, we have demonstrated that silenc-

ing MUC1 in AML cells leads to reduced translocation of b-catenin

to the nucleus. Furthermore, targeting MUC1-C with GO-203 led to

F IGURE 7 Low MUC1 and survivin Expression in Human AML is Associated with Increased Overall Survival. Overall survival of 260 AML
patients with diverse cytogenetic and molecular abnormalities was assessed. A, Patients were stratified into low MUC1 and high MUC1
expression groups based on an optimal threshold (234 low; 26 high) determined by microarray analysis from an independent dataset. The
significance measures are based on univariate analysis (P = .04). B, Patients were also stratified into low survivin (BIRC5) and high survivin
(BIRC5) expression groups based on an optimal threshold (231 low; 29 high) determined by microarray analysis from an independent dataset.
The significance measures are based on univariate analysis (P = .01). C, Overall survival was assessed in patients with concomitant low
expression of MUC1 and survivin compared to the remainder of AML patients in this group. The threshold was determined based on overlap of
previously described single gene expression stratification (52 Low MUC1/Low BIRC5; 208 other MUC1/BIDC5 expressers). The significance
measures are based on univariate analysis (0.001)
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significantly decreased levels of active b-catenin in primary CD34+

AML cells.

Survivin (BIRC5), a member of the inhibitor of apoptosis protein

(IAP) gene family, inhibits apoptosis, enhances proliferation and pro-

motes angiogenesis.14-16,30,47 Survivin is highly expressed in AML

progenitor cells and is predictive of poor clinical outcomes in

patients with AML.17 Survivin is thus a critical target in AML that is

regulated, at least in part, by the b-catenin/TCF4 complex.48 Our

data demonstrate that silencing MUC1-C in AML cells and thereby

decreased translocation of b-catenin to the nucleus results in a sig-

nificant down-regulation of survivin expression at both the mRNA

and protein levels. Furthermore, our findings demonstrate that

MUC1-C drives marked increases in survivin levels. The role of sur-

vivin as a critical mediator of MUC1 signalling was further demon-

strated in an NSG mouse model. Mice inoculated with MUC1

silenced AML cells in which survivin was overexpressed using lentivi-

ral transduction showed greater AML engraftment than mice inocu-

lated with MUC1 silenced AML cells.

Down-regulation of survivin expression has been shown to over-

come drug resistance in acute leukaemia models.37,49 Targeting sur-

vivin with shRNA in combination with chemotherapy also resulted in

the absence of detectable minimal residual disease in a xenograft

model of primary leukaemia.49 Given these findings, we sought to

examine whether MUC1-C inhibition and the subsequent decrease in

survivin levels render AML cells more susceptible to standard

chemotherapy. Concurrent treatment of AML cells with the MUC1-C

inhibitor GO-203 in combination with Ara-C was found to have a

synergistic effect as validated by CompuSyn analysis. These data

show that targeting MUC1-C with GO-203 can potentially lead to a

decrease in anti-apoptotic properties in AML blasts via survivin

down-regulation, thereby rendering the tumour cells more susceptible

to genotoxic damage. A similar effect was demonstrated following

MUC1 knockout using CRISPR/Cas9 technology. AML cells lacking

MUC1 expression were shown to be significantly more susceptible to

Ara-C-induced cytotoxic injury. Interestingly, survivin overexpression

in MUC1 silenced AML cells led to increased resistance to Ara-C

treatment in AML cells, confirming that MUC1 renders AML more

resistant to cytotoxic injury in part via surviving-mediated mechanism.

Consistent with our results, gene expression analysis of patient

with AML demonstrated that lower MUC1 and survivin levels led to

significantly prolonged overall survival in patients with complex cyto-

genetic and molecular abnormalities.

In conclusion, our data show that MUC1-C signalling is

crucial for AML establishment in vivo. MUC1 levels affect the

b-catenin signalling and its downstream target survivin. Furthermore,

MUC1-C inhibition in AML cells with GO-203 treatment can poten-

tially sensitize drug-resistant cells to chemotherapeutic regimens via

survivin down-regulation. This combinatorial approach has the

potential to eradicate blasts in patients with AML.
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