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STAT transcription factors play a critical role in mediating the
effects of cytokines on myeloid cells. As STAT target genes
control key processes such as survival, proliferation and self-
renewal, it is not surprising that constitutive activation of
STATs, particularly STAT3 and STAT5, are common events in
many myeloid tumors. STATs are activated both by mutant
tyrosine kinases as well as other pathogenic events, and
continued activation of STATs is common in the setting of
resistance to kinase inhibitors. Thus, the targeting of STATs,
alone or in combination with other drugs, will likely have
increasing importance for cancer therapy.

Introduction

In the two decades since the STAT signaling pathway was first
described, enormous strides have been made in understanding the
critical role that this pathway plays in diverse hematopoietic
cancers. STATs are typically oncogenic through the constitutive
activation of tyrosine kinases, and through the years, a number of
mutant kinases have been characterized that activate STAT
signaling. Because of the critical role of tyrosine kinases in many
cancers, much effort has gone into the search for inhibitors of
these kinases that may be effective for cancer therapy. However,
because of the critical role that STATs play in mediating the effect
of kinases, they may also be directly targeted and may be effective
anti-cancer agents. As we come to better understand STAT
signaling in cancer, our ability to directly target the STAT
pathway as a means of cancer therapy will be enhanced, thus
contributing to a more personalized approach of treating patients.

STAT Signaling

Signal transducer and activator of transcription (STAT) proteins
are a family of transcription factors that regulate critical cellular
processes, such as proliferation, differentiation and apoptosis.1

When a growth factor or cytokine binds to its receptor, it either
activates its intrinsic tyrosine kinase activity or it causes the
receptor chains to aggregate, bringing associated tyrosine kinases,

usually JAKs, into juxtaposition.2 This activates their kinase
activity, which mediates the subsequent tyrosine phosphorylation
of the JAKs themselves as well as the cytokine receptor chains.
The highly tyrosine phosphorylated receptor-kinase complex
then serves as a docking site for proteins, such as STATs, which
possess src-homology-2 (SH2) domains that allow binding to
specific tyrosine-phosphorylated amino acid sequences.3 The
STATs recruited in this way become phosphorylated on unique
tyrosine residues necessary for activation,4 then dissociate
from the receptor-kinase complex and dimerize via reciprocal
phosphotyrosine-SH2 interactions.5 The STAT dimers translocate
to the nucleus where they bind to a nine base pair sequence in
the regulatory regions of target genes, thereby modulating their
expression.6

STATs may also function as monomers and as non-
phosphorylated dimers; however, in most circumstances it is the
tyrosine phosphorylated dimer that is the critical mediator of
signal transduction of the pathway. In some instances, the activity
of the STAT transcription factor can be further modulated by
the phosphorylation of the STAT protein on a serine residue.7

The activation of STATs is normally both rapid and transient
and is subject to tight regulation. Such regulation includes not
only kinase activation, but also inhibitory proteins that mediate
the inactivation of STATs and prevent further signaling. These
inhibitory regulators include phosphatases, suppressors of cyto-
kine signaling (SOCS), protein inhibitors of activated STATs
(PIAS) and nuclear ubiquitin E3 ligases.

STAT-mediated gene expression is involved in many normal
physiological processes, such as proliferation, survival and differ-
entiation. In hematopoietic cells in particular, cytokines whose
effects are transduced by STATs play a central role in regulating
the production of red blood cells, platelets and the full spectrum
of white blood cells. Thus, it is not surprising that inappropriate
activation of STATs plays a critical role in the formation and
maintenance of the full spectrum of hematopoietic cancers,
particularly those of the myeloid lineage. This can occur by a
variety of mechanisms, including the autocrine or paracrine
production of growth factors, activation of kinases by mutations,
or loss of negative regulators (Fig. 1).

Acute myeloid leukemia. Deregulated STAT signaling is
associated with increased cellular proliferation, disturbed differ-
entiation and arrested apoptosis, which are the hallmarks of
leukemogenesis. Constitutive activation of two of the family
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members, STAT3 and STAT5, either alone or together, has been
demonstrated in leukemic cell lines and blasts in a substantial
proportion of patients with acute myeloid leukemia (AML).8-12

Constitutive activation of STAT3 and the presence of a truncated
isoform, STAT3B, were correlated with a poor clinical outcome.12

Moreover, expression of the STAT3B isoform was more prevalent
in relapse as compared with diagnosis.13 Recently, it was suggested
that induced phosphorylation of signaling intermediates was more
informative for understanding the biology of leukemic cells than
the basal phosphorylation state. Using single cell flow cytometry,
it was shown that potentiated STAT3 and STAT5 phosphoryla-
tion post growth factor stimulation was associated with a negative
outcome for patients receiving standard AML chemotherapy.14,15

Several mechanisms have been implicated for the constitutive
activation of STATs in leukemias, including autocrine/paracrine
stimulation by cytokines16 and the effects of kinases activated
through mutations. Some of these mutations include chromo-
somal translocations generating fusion proteins with constitutive
tyrosine kinase activity, such as BCR/ABL, which is a kinase
fusion protein in chronic myelogenous leukemia (CML) and
acute lymphoblastic leukemia (ALL) that leads to the constitutive
activation of STAT5. Mutations in FMS related tyrosine kinase 3
(FLT3), either involving internal tandem duplications (ITD) or
point mutations in the activating loop of the tyrosine kinase

domain, are observed in approximately 30% of AML patients and
are associated with poorer prognosis.17 FLT3 ITD mutations
cause the constitutive activation of FLT3, leading to aberrant acti-
vation of multiple downstream pathways, including STAT5.18-20

The activation of STAT5 by FLT3 ITD is independent of Src
and JAK kinases.21 Further supporting the pathogenic role of this
mutation, FLT3-ITD expression confers factor independent
growth in murine IL-3-dependent cell lines and causes a fatal
myeloproliferative disorder in murine bone marrow transplanta-
tion models and in FLT3-ITD knock-in mice.22,23

Several small molecule FLT3-tyrosine kinase inhibitors (TKI)
have been developed and examined in AML patients as single
agents or in combination with chemotherapy. The induction
of cytotoxicity by FLT3 inhibitors is closely correlated with
deactivation of STAT5, while resistance to FLT3 inhibition is
associated with persistent activation of STAT5.24 It is hypothe-
sized that upregulation of FLT3 ligand and the silencing of SOCS
expression by methylation of its genetic regulatory elements
combine to enhance STAT signaling activity. These data support
the use of combination therapy of FLT3 inhibitors with agents
targeting the STAT pathway as treatment for AML patients with
FLT3 mutations.25

Chronic myelogenous leukemia. Chronic myelogenous leuke-
mia (CML) is characterized by the presence of the Philadelphia

Figure 1. STAT transcription factors, primarily STAT3 and STAT5, are activated in myeloid malignancies through a variety of mechanisms, including
autocrine and paracrine growth factors, mutated receptors and kinases and decreased activity of negative regulators including phosphatases and SOCS
proteins. Activated dimers bind to the regulatory region of target genes, recruit co-activators and modulate transcription of key target genes.
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chromosome, the reciprocal translocation of chromosomes 9 and
22 that generate the fusion protein BCR/ABL. This protein
functions as a tyrosine kinase and can transform hematopoietic
cells.26 STAT5 is constitutively activated by both the 190 kD
and 210 kD isoforms of BCR/ABL.27-30 STAT5 activation is
correlated with functional effects on cell cycle progression and
resistance to apoptosis through increased expression of cyclin
D1 and Bcl-xl, respectively31,32 and is essential for leukemic
cell survival.33,34 Murine STAT5A-null bone marrow cells were
inefficient in generating and maintaining a CML-like disease,
suggesting an important role of STAT5 in the pathogenesis of
CML.35 STAT5 activation may play a critical role in drug
resistance in CML through the induction of P-glycoprotein and
the modulation of telomerase activity,36 and high expression of
STAT5 accounts for TKI resistance.37,38

Currently, BCR/ABL kinase inhibition by imatinib, and the
related kinase inhibitors nilotinib and dasatinib, is considered
standard therapy for CML.38,39 Imatinib leads to complete inhibi-
tion of STAT5 activation, and this is likely a key part of the
effectiveness of this therapeutic approach. However, resistance to
imatinib develops in a subset of patients, generally through
mutations in BCR/ABL that impair binding of the inhibitors to
the ATP-binding site.

Several approaches have been taken to identify targets other
than BCR/ABL for treating CML resistant to kinase inhibi-
tors.40,41 Given the central role of STAT5 in mediating the
pathogenic effects of BCR/ABL, this is an appealing target, as
discussed in more detail below.42,43

Another suggested mechanism for imatinib resistance is activa-
tion of STAT3 within the bone marrow microenvironment. This
novel mechanism suggests the utility of using STAT3 inhibitors
to increase the efficacy of BCR-ABL inhibitors.44

Myeloproliferative neoplasms. Myeloproliferative neoplasms
(MPN) are a group of clonal disorders that arise from the
transformation of hematopoietic stem cells. For many years the
molecular pathogenesis of these diseases remained unknown. It
was reported that a subset of the patients with polycythemia vera
(PV) displayed constitutive STAT3 activation in their peripheral
granulocytes.45 By applying a panel of inhibitors, it was also
shown that spontaneous erythropoietin-independent differentia-
tion in PV is due to a constitutive activation of signaling path-
ways including JAK2-STAT5, PI3K and Src.46 STAT5 nuclear
translocation and activation was detected in megakaryocytes
and in circulating CD34+ cells from the majority of patients with
idiopathic myelofibrosis and the spontaneous growth of these cells
was abolished by STAT5 or JAK2 inhibition.47

In 2005, several groups reported a single acquired point
mutation in JAK2 in the majority of patients with Philadelphia
chromosome (Ph)-negative MPN.48-51 This JAK2 mutation is
a valine to phenylalanine substitution at position 617 (JAK2
V617F) in the kinase-dead JH2 domain. It is believed that this
mutation disrupts the auto-inhibitory effect of the JH2 domain
on the JH1 domain, which leads to both constitutive activation
and hypersensitivity to the effect of cytokines.52 This mutation
is believed to play a critical role in the pathogenesis of these
disorders; mice transplanted with bone marrow cells transduced

by a retrovirus expressing JAK2 V617F rapidly develop
erythrocytosis, progressing to a myelofibrotic state within a few
months.52-54 Reflecting the central role of STAT5 in the
pathogenesis of these diseases, there is constitutive activation of
STAT5 in JAK2 V617F-expressing Ba/F3 cells and a significant
increase in phosphorylated STAT5 in the bone marrow and
spleens of JAK2 V617F animals.53,54

The ability of JAK2 V617F to induce cytokine-independent
activation of the JAK2 and STAT5 pathways and transformation
to cytokine independence requires the coexpression of homo-
dimeric Type I cytokine receptors, such as the erythropoietin
receptor (EpoR), thrombopoietin receptor (TpoR) or granulocyte
colony-stimulating-factor receptor (GCSFR). EpoR mutations
that impair erythropoietin-mediated JAK2 or STAT5 activation
also impair transformation mediated by the JAK2 V617F kinase,
indicating that JAK2 V617F requires a cytokine receptor scaffold
for its transforming and signaling activities.55,56 Introduction of
a constitutively active form of STAT5 and the overexpression of
the STAT5 target gene Bcl-xl into human erythroid progenitors
induces an erythropoietin-independent terminal differentiation
and endogenous erythroid colony (EEC) formation, which is a
hallmark of PV. STAT5 and Bcl-xl knock-down in human
erythroid progenitors inhibits colony-forming unit-erythroid
(CFU-E) formation in the presence of erythropoietin. These
results suggest that JAK2 V617F may induce EEC via the
STAT5-dependent Bcl-xl expression.57

The mutational frequency of JAK2 V617F is estimated at over
95% in PV, 50% in essential thrombocytosis (ET) and primary
myelofibrosis (PMF), 20% in certain other MPNs including
refractory anemia with ringed sideroblasts and thrombocytosis
(RARS-T) and less than 5% in AML or myelodysplastic syn-
drome.58 Thus, JAK2 V617F plays a critical role in a significant
subset of MPNs, suggesting that targeting this kinase may be a
useful treatment strategy.

In addition to STAT5, STAT3 is also activated in MPNs.
Immunostaining of bone marrow biopsies show three specific
patterns of phosphorylated STAT3 and STAT5 that differed
significantly from the normal pattern. Specifically, there is
uniformly increased STAT3 and STAT5 phosphorylation in
PV; increased STAT3 phosphorylation and reduced STAT5
phosphorylation in ET; and uniformly reduced STAT3 and
STAT5 phosphorylation in PMF. Interestingly, in all evaluated
MPNs, the STAT5 and STAT3 phosphorylation pattern is not
influenced by the presence of the JAK2 V617F mutation.59 By
contrast, in another study examining phospho-STAT5 immuno-
histochemistry of bone marrow biopsies of chronic MPN, all
patients with the JAK2 V617F mutation showed abnormal
nuclear STAT5 phosphorylation. In the JAK2 wild-type group,
STAT5 phosphorylation was observed in about a third of
the patients.60,61

In addition to JAK2 V617F, other JAK2 mutations have
been described in MPN. Mutations in exon 12 of JAK2 are
consistently associated with increased levels of tyrosine phos-
phorylated JAK2 and STAT5. When transduced into Ba/F3 cells,
all four JAK2 exon 12 mutations caused growth factor hyper-
sensitivity and activation of biochemical pathways associated
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with erythropoietin signaling.62 Interestingly, JAK2 exon 12
mutations did not affect the level of STAT5 phosphorylation or
Akt phosphorylation in immunohistochemistry of bone marrow
biopsies from a small number of patients,61 demonstrating the
complexity of the molecular mechanisms in MPN.

A gain of function mutation in the thrombopoietin receptor
(MPL) is found in primary myelofibrosis. This mutation, MPL
W515L, as well as other MPL mutations, has a prevalence of
4% in ET and up to 11% in primary myelofibrosis.58,63 Expres-
sion of MPLW515L in 32D, UT7 or Ba/F3 cells conferred
cytokine independent growth and thrombopoietin hypersensiti-
vity and resulted in constitutive phosphorylation of JAK2,
STAT3, STAT5, Akt and ERK. In a murine bone marrow
transplant assay, expression of MPLW515L resulted in a fully
penetrant myeloproliferative disorder characterized by marked
thrombocythemia, splenomegaly due to extramedullary hemato-
poiesis and increased reticulin fibrosis. Pharmacological reduction
of JAK kinase activity inhibited MPLW515L-mediated prolifera-
tion and JAK-STAT signaling in vitro.63 In a murine model,
JAK2 inhibition improved survival, normalized white blood cell
counts and platelet counts and markedly reduced extramedullary
hematopoiesis and bone marrow fibrosis. There was a dose-
dependent inhibition of STAT signaling, including potent
inhibition of STAT3 and STAT5 phosphorylation in primary
tissues from MPLW515L mice treated with the JAK inhibitor.64

Several JAK kinase inhibitors are currently in clinical trials.
They are effective in alleviating constitutional symptoms and
reducing spleen size but they have not been sufficient in inducing
histologic or molecular remission. In addition, they can induce
side effects including myelosuppression, gastrointestinal distur-
bances, asymptomatic elevation of liver and pancreatic enzymes,
peripheral neuropathy and hyperacute relapse of symptoms during
treatment interruption.65 Since JAK mutations in MPN do not
always occur in the predominant or ancestral mutant clone, the
development of inhibitors to common mediators of diverse
signaling pathways in this disease is very desirable. One attrac-
tive convergence point of these diverse pathways is the STAT
signaling pathway, and thus the development of STAT inhibitors
may help improve clinical outcomes for patients with MPN.

It is also worth mentioning that other rarer myeloid malig-
nancies such as systemic mastocytosis (characterized by a D816V
mutation in KIT), hypereosinophilic syndrome (characterized by
the FIP1L1-PDGFRa tyrosine kinase fusion protein generated
by an interstitial deletion on chromosome 4q12) and chronic
myeloproliferative diseases (CMPD) with t(5;12) (generating the
TEL-PDGFR tyrosine kinase fusion protein) exhibit constitu-
tive activation of STATs, which play a significant role in the
pathogenesis of these diseases.66-72 Thus, it is clear that STATs,
particularly STAT5 and STAT3, are activated in the full spectrum
of myeloid diseases, regardless of the upstream mutational event.
These proteins then mediate the transcriptional activation of
target genes that directly drive the phenotype of these cells,
including proliferation, survival, self-renewal and resistance to
chemotherapy (Fig. 2). This suggests that pharmacological STAT
inhibitors might be particularly beneficial for the treatment of
patients suffering from these malignancies.

Targeting the STAT Pathway
for the Treatment of Hematologic Malignancies

Since STATs are activated in numerous blood cancers and are
essential to the pathogenesis of these tumors, targeting STATs is
an attractive approach for therapeutic intervention. The activa-
tion of STATs can occur through the constitutive activity of
tyrosine kinases, such as BCR/ABL, FLT3 and JAK2, as well as
activation by autocrine and paracrine factors, loss of negative
regulators and other mechanisms. Inhibiting tyrosine kinases is
an appealing strategy for treating these diseases, in that it addresses
the driving mutation in the malignant cell and can shut down
several downstream pathways simultaneously (Fig. 3). In fact,
the development of imatinib and other BCR/ABL kinase inhibi-
tors represents a triumph of the molecular therapy of cancer.
However, there are several limitations to this strategy. First,
resistance often emerges to kinase inhibitors. This can occur
through further mutations of the kinase, blocking the ability of
the drug to bind to the target.73,74 In addition, activation of
other kinases may occur to circumvent the dependence on the
inhibited kinase.75 Thus, inhibition of a common downstream
mediator of the effects of these activated kinases holds out the
promise for increased efficacy even in the setting of additional
kinase mutations, the ability to block the effects of other activated
kinases and the potential to synergize with kinase inhibitors and
other therapies. The large number of tyrosine kinases that can be
activated in hematological cancers converges on a small number
of transcription factors, which then regulate the transcription of
the genes driving the tumor phenotype. Therefore, an appealing
strategy is to directly target key transcription factors, such as
STAT3 and STAT5, which may have broad applicability for
cancer therapy (Fig. 4).

Figure 2. In myeloid leukemias and myeloproliferative neoplasms,
a variety of mutations can lead to the activation of tyrosine kinases
that can phosphorylate STATs, particularly STAT5 and STAT3.
These STATs then drive the transcriptional activation of genes regulating
survival, proliferation, self-renewal and other phenotypes characteristic
of these diseases.
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Strategies to developing STAT inhibitors: cell-based screens.
The multiple steps through which an unphosphorylated STAT
molecule in the cytoplasm proceed to activate gene transcription
in the nucleus affords a number of opportunities for targeted
inhibition. One strategy to identify inhibitors of the various steps
in the STAT signaling pathway is to establish a cell-based assay in
which the transcriptional activity of STATs can be monitored
using a reporter, such as luciferase. Coupled with a counter screen
to exclude non-specific effects, this approach allows the ability to
rapidly screen thousands of compounds to identify specific STAT
inhibitors. The open-ended nature of this screen allows for the
identification of STAT inhibitors at any step in the signaling
pathway, although it can be challenging to deconvolute how a hit
derived from this assay specifically blocks STAT function. One
compound that has emerged from this approach is pimozide,
which inhibits both STAT3 and STAT5 in hematopoietic tumors
including CML, AML and MPNs.42,76 Pimozide inhibits STAT3
and STAT5 phosphorylation, but several lines of evidence
strongly suggest that it does not inhibit kinases such as BCR/
ABL, FLT3 and JAK2. As expected by virtue of its targeting a
downstream mediator, pimozide is effective in models of CML
driven by BCR/ABL mutations, such as T315I, that render it
resistant to currently available kinase inhibitors.

Pimozide has also displayed anti-leukemic effects in in vivo
models. In a mouse model of AML driven by a FLT3 ITD

mutation, pimozide results in a notable reduction in tumor
burden (Nelson and Frank, manuscript under revision).
Pimozide, which is FDA approved for neurological disorders, is
known to have a good safety profile in humans. Reflecting this,
pimozide is effective at blocking colony formation in vitro from
CD34+ cells derived from patients with CML, but has minimal
effect on colony formation from CD34+ cells derived from healthy
donors. Nonetheless, it is not yet clear if effective anti-tumor
doses are achievable in humans. Ultimately, it is possible to test
the pharmacodynamic effects of pimozide in AML patients by
treating with doses known to be safe in humans, then testing for
changes in STAT5 phosphorylation in blasts in the peripheral
blood or bone marrow.

Other STAT inhibitors that have been identified by this
approach include nifuroxazide, which appears to act through
kinase inhibition, and pyrimethamine, whose mechanism of
action is still being elucidated.77-79 Thus, cell-based screens
represent one useful strategy for developing STAT inhibitors with
potential for clinical development.

The role of phosphatases in STAT inhibition. STAT activa-
tion represents a balance between phosphorylation by tyrosine
kinases and deactivation largely by phosphatases. In some cancers,
negative regulators of STATs exhibit low activity through
decreased expression, often through promoter methylation.80

Therefore, one method of reducing STAT signaling is by

Figure 3. The activation of STATs in cancer cells can be blocked by modulating targets resulting in loss of STAT phosphorylation. This includes inhibition
of receptors and their ligands, inhibition of activated kinases (both mutated and unmutated) or activation of negative regulators such as phosphatases
and SOCS proteins.
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enhancing the activity of these negative regulators. There are
several reports of drugs whose effects may be dependent on these
negative regulators.81,82 For example, sunitinib and sorafenib are
kinase inhibitors that are approved for use in solid tumors, though
they may have benefit in hematopoietic tumors as well. However,
several recent reports have also suggested a role for phosphatases
in the action of these drugs. By inhibiting the activity of phos-
phatases using sodium vanadate or by siRNA-mediated knock-
down, the ability of sorafenib or sunitinib to decrease STAT3
tyrosine phosphorylation was reduced. In addition, the reduction
of phosphatase activity inhibited the ability of sunitinib to kill
tumor cells in vitro. Therefore, it is possible that the activation
of phosphatases is a critical component of the clinical effects of
sorafenib, sunitinib and other kinase inhibitors. It is not surpris-
ing that phosphatases play an important albeit indirect role in
dephosphorylating activated STATs after kinase inhibition.
However, these studies on sorafenib and sunitinib suggest a more
active role of these drugs on phosphatases, and thus, the dephos-
phorylation of the STATs may occur through both the inhibi-
tion of the kinase and activation of the phosphatase. Thus, the
inhibition of STAT phosphorylation by the activation of
phosphatases may gain increased importance in the near future.

Inhibition of DNA binding: decoy oligonucleotides. Trans-
cription factors bind to DNA to regulate expression of their target
genes, and thus one method of inhibiting their activity is to

prevent them from binding to their target sequence. One means
of doing so is by competing the protein away from binding to
the regulatory regions of genes. Synthetic double stranded oligo-
nucleotides containing a STAT binding sequence can act as
decoys, such that activated STATs bind to this sequence, rather
than to the regulatory regions of their endogenous target genes.83

The K562 CML cell line depends on the constitutive activation
of STAT5, making it a logical model to test this approach.
Introducing a decoy oligonucleotide into these cells reduces
STAT5 transcriptional activity leading to the reduction in expres-
sion of critical STAT5 target genes and the induction of
apoptosis. Importantly, this decoy oligonucleotide has no effect
on the myeloid HL-60 cell line, which has no constitutively
activated STATs, demonstrating that the effect of the decoy
oligonucleotide depends on the presence of activated STAT5.84

Therefore, preventing STAT transcriptional activity through the
use of a decoy oligonucleotide may be an effective way of reducing
STAT activity in tumor cells.

Inhibition of DNA binding: small molecules. Since double-
stranded oligonucleotides may have pharmacological properties
limiting their applicability in vivo, alternate approaches to inhibit
STAT-DNA binding are also of potential importance. To identify
small molecules that directly inhibit STAT3 DNA binding
activity, a library of compounds was screened using an in vitro
binding assay.85 A platinum (IV) complex, IS3 295, was identified

Figure 4. In addition to inhibiting kinases, STATs can be targeted directly by blocking their ability to form activated dimers, translocate into the nucleus,
bind DNA or recruit co-activators.
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by its ability to inhibit STAT3 DNA binding. Though other
platinum-based compounds such as cisplatin bind to DNA, their
binding is non-specific. In contrast, IS3 295 inhibits STAT1 and
STAT3 homo- and heterodimers from binding DNA, while
having no effect on the ability of STAT5 homodimers or the
unrelated E2F1 protein to bind to DNA. In contrast, cisplatin has
no effect on the DNA binding activity of any of these proteins,
demonstrating the specificity of IS3 295 to STAT1 and STAT3.
Significantly, IS3 295 did not disrupt the binding of STATs
that were already bound to DNA, suggesting that they could
only bind to free STAT proteins. This led to the suggestion that
IS3 295 directly interacts with the DNA binding domain of
STATs, thereby preventing them from binding to DNA. IS3 295
inhibited STAT-mediated gene transcription and it led to
apoptosis in cells containing constitutively activated STAT3.

Flavopiridol is a drug that has well-known antineoplastic
activity due to its ability to inhibit cyclin-dependent kinases, but
intriguing data suggest it might also disrupt STAT3-DNA
binding.86 Using a variety of cell-free assays, it has been shown
that flavopiridol inhibits the DNA binding activity of STAT3,
while not affecting DNA binding of other proteins. In addition,
flavopiridol decreases the transcription of Mcl-1, a STAT3 target
gene important in apoptosis regulation. Though flavopiridol
affects RNA polymerase II phosphorylation, it does not cause a
global reduction in gene transcription, suggesting that flavopiridol
has some selectivity to STAT3. Therefore, the data on flavopiridol
and IS3 295 suggest that it is possible to inhibit the interaction of
STAT3 with DNA and kill tumor cells, and thus targeted DNA
binding inhibitors may have significant therapeutic potential.

Dimerization inhibitors. The activity of STATs is critically
dependent on their SH2 domains. These are required for
recruitment of STATs to activated receptor-kinase complexes
where they become phosphorylated, and for each monomer to
bind to the phosphorylated tyrosine of its binding partner,
allowing active dimers to form. Though there may be biological
effects of STAT monomers, tyrosine phosphorylated STAT
dimers are likely the predominant active molecule for transcrip-
tional regulation. Therefore, small molecules that specifically
block SH2 domains would likely be useful STAT inhibitors.
Using a structure-based virtual screen as well as the interrogation
of chemical libraries, several such dimerization inhibitors have
been identified.87,88 The first dimerization inhibitor discovered
was STA-21. This compound disrupts dimer formation, has
no effect on STAT3 phosphorylation and lacks any effect on
STAT1 or STAT5.89 Treatment of cells with STA-21 reduced
the expression of STAT3 target genes and induced apoptosis in
cancer cell lines containing activated STAT3. Significantly, this

compound was used in a small clinical trial.90 Topically applied
STA-21 was successfully used to treat the skin lesions of psoriasis,
a disease characterized by constitutive STAT3 activity. It is
unclear what would be the bioavailability of this compound
should it be given systemically for cancer patients.

Other similar approaches have led to both peptide-based and
non-peptide small molecules that target the STAT3 SH2
domain.91-94 For example, C188-9, which selectively blocks
STAT3 but not STAT1 phosphorylation, induces apoptosis in
AML cell lines.95 Taken together, these studies suggest that
STAT dimerization inhibitors may be important approaches to
the treatment of cancer.

Concluding Remarks

Advances in our understanding of myeloid diseases has revealed
that STAT transcription factors play a key role in activating genes
driving the inappropriate proliferation, survival and self-renewal
characteristic of these diseases. In addition to providing insights
into their pathogenesis, these findings have also opened up new
possibilities for targeted therapies of these diseases. The increasing
use of tyrosine kinase inhibitors in clinical practice and in clinical
trials has been a major advance in cancer therapy, and many of
these drugs exert some or all of their effects through inhibition
of STATs. However, directly targeting STATs is also likely to
have a clinical benefit that may complement or exceed that
of kinase inhibitors. Even in CML, where the targeting of BCR/
ABL has led to great success, issues such as the emergence of
drug resistance or the inability to eradicate the leukemic stem
cell may be overcome with direct STAT5 inhibitors. In MPNs
and AML, kinase inhibitors targeting JAK2 or FLT3 have been
significantly less effective, perhaps due to co-activation of other
pathways. While STATs and other transcription factors had
traditionally been viewed as difficult targets to modulate phar-
macologically, it is clear that with the use of a variety of strategies
significant progress is being made. Thus, STAT inhibitors, alone
or combined with kinase inhibitors and other therapies, may lead
to enhanced clinical benefit.
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