69 research outputs found

    Adsorption of 5-Fluorouracil on Au(111) and Cu(111) surfaces

    Get PDF
    The adsorption of 5-Fluorouracil (5FU) on Au(111) and Cu(111) surfaces as a function of molecular coverage and temperature has been studied, using x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The nature of 5-Fluorouracil bonding with the two substrates is remarkably different. The Cu substrate forms a chemisorbed complex with 5-FU while the Au substrate shows only physisorption. NEXAFS data at the C, N and O K-edge show a strong angular dependence, indicating that 5-FU lies nearly parallel on the inert Au(111) surface, and at a steep angle on the Cu(111) surface. 5-FU is a biomolecule used for cancer treatment and the results are relevant for those using metal surfaces to prepare 5-FU for applications such as drug delivery.The adsorption of 5-Fluorouracil (5FU) on Au(111) and Cu(111) surfaces as a function of molecular coverage and temperature has been studied, using x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. The nature of 5-Fluorouracil bonding with the two substrates is remarkably different. The Cu substrate forms a chemisorbed complex with 5-FU while the Au substrate shows only physisorption. NEXAFS data at the C, N and O K-edge show a strong angular dependence, indicating that 5-FU lies nearly parallel on the inert Au(111) surface, and at a steep angle on the Cu(111) surface. 5-FU is a biomolecule used for cancer treatment and the results are relevant for those using metal surfaces to prepare 5-FU for applications such as drug delivery

    On the interaction of Mg with the (111) and (110) surfaces of ceria

    Get PDF
    The catalytic activity of cerium dioxide can be modified by deposition of alkaline earth oxide layers or nanoparticles or by substitutional doping of metal cations at the Ce site in ceria. In order to understand the effect of Mg oxide deposition and doping, a combination of experiment and first principles simulations is a powerful tool. In this paper, we examine the interaction of Mg with the ceria (111) surface using both angle resolved X-ray (ARXPS) and resonant (RPES) photoelectron spectroscopy measurements and density functional theory (DFT) corrected for on-site Coulomb interactions (DFT + U). With DFT + U, we also examine the interaction of Mg with the ceria (110) surface. The experiments show that upon deposition of Mg, Ce ions are reduced to Ce3+, while Mg is oxidised. When Mg is incorporated into ceria, no reduced Ce3+ ions are found and oxygen vacancies are present. The DFT + U simulations show that each Mg that is introduced leads to formation of two reduced Ce3+ ions. When Mg is incorporated at a Ce site in the (111) surface, one oxygen vacancy is formed for each Mg to compensate the different valencies, so that all Ce ions are oxidised. The behaviour of Mg upon interaction with the (110) surface is the same as with the (111) surface. The combined results provide a basis for deeper insights into the catalytic behaviour of ceria-based mixed oxide catalysts

    Redox-mediated C–C bond scission in alcohols adsorbed on CeO2−x thin films

    Get PDF
    AbstractThe decomposition mechanisms of ethanol and ethylene glycol on well-ordered stoichiometric CeO2(111) and partially reduced CeO2−x (111) films were investigated by means of synchrotron radiation photoelectron spectroscopy, resonant photoemission spectroscopy, and temperature programmed desorption. Both alcohols partially deprotonate upon adsorption at 150 K and subsequent annealing yielding stable ethoxy and ethylenedioxy species. The C–C bond scission in both ethoxy and ethylenedioxy species on stoichiometric CeO2(111) involves formation of acetaldehyde-like intermediates and yields CO and CO2 accompanied by desorption of acetaldehyde, H2O, and H2. This decomposition pathway leads to the formation of oxygen vacancies. In the presence of oxygen vacancies, C–O bond scission in ethoxy species yields C2H4. In contrast, C–C bond scission in ethylenedioxy species on the partially reduced CeO2−x (111) is favored with respect to C–O bond scission and yields methanol, formaldehyde, and CO accompanied by the desorption of H2O and H2. Still, scission of C–O bonds on both sides of the ethylenedioxy species yields minor amounts of accompanying C2H4 and C2H2. C–O bond scission is coupled with a partial recovery of the lattice oxygen in competition with its removal in the form of water

    Surface sites on Pt–CeO2 mixed oxide catalysts probed by CO adsorption: a synchrotron radiation photoelectron spectroscopy study

    Get PDF
    By means of synchrotron radiation photoemission spectroscopy, we have investigated Pt–CeO2 mixed oxide films prepared on CeO2(111)/Cu(111). Using CO molecules as a probe, we associate the corresponding surface species with specific surface sites. This allows us to identify the changes in the composition and morphology of Pt–CeO2 mixed oxide films caused by annealing in an ultrahigh vacuum. Specifically, two peaks in C 1s spectra at 289.4 and 291.2 eV, associated with tridentate and bidentate carbonate species, are formed on the nanostructured stoichiometric CeO2 film. The peak at 290.5–291.0 eV in the C 1s spectra indicates the onset of restructuring, i.e. coarsening, of the Pt–CeO2 film. This peak is associated with a carbonate species formed near an oxygen vacancy. The onset of cerium oxide reduction is indicated by the peak at 287.8–288.0 eV associated with carbonite species formed near Ce3+ cations. The development of surface species on the Pt–CeO2 mixed oxides suggests that restructuring of the films occurs above 300 K irrespective of Pt loadings. We do not find any adsorbed CO species associated with Pt4+ or Pt2+. The onset of Pt2+ reduction is indicated by the peak at 286.9 eV in the C 1s spectra due to CO adsorption on metallic Pt particles. The thermal stability of Pt2+ in Pt–CeO2 mixed oxide depends on Pt loading. We find excellent stability of Pt2+ for 12% Pt content in the CeO2 film, whereas at a Pt concentration of 25% in the CeO2 film, a large fraction of the Pt2+ is converted into metallic Pt particles above 300 K

    Hydrogen activation on Pt–Sn nanoalloys supported on mixed Sn–Ce oxide films

    Get PDF
    We have studied the interaction of H2 with Pt–Sn nanoalloys supported on Sn–Ce mixed oxide films of different composition by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy. The model catalysts are prepared in a three step procedure that involves (i) the preparation of well-ordered CeO2(111) films on Cu(111) followed by subsequent physical vapor deposition of (ii) metallic Sn and (iii) metallic Pt. The formation of mixed Sn–Ce oxide is accompanied by partial reduction of Ce4+ cations to Ce3+. Pt deposition leads to the formation of Pt–Sn nanoalloys accompanied by the partial re-oxidation of Ce3+ to Ce4+. Subsequent annealing promotes further Pt–Sn alloy formation at expense of the Sn content in the Sn–Ce mixed oxide. Adsorption of H2 on Pt–Sn/Sn–Ce–O at 150 K followed by stepwise annealing results in reversible reduction of Ce cations caused by spillover of dissociated hydrogen between 150 and 300 K. Above 500 K, annealing of Pt–Sn/Sn–Ce–O in a hydrogen atmosphere results in irreversible reduction of Ce cations. This reduction is caused by the reaction of hydrogen with oxygen provided by the mixed oxide substrate via the reverse spillover to Pt–Sn nanoalloy. The extent of the hydrogen and oxygen spillover strongly depends on the amount of Sn in the Sn–Ce mixed-oxide. We observe an enhancement of hydrogen spillover on Pt–Sn/Sn–Ce–O at low Sn concentration as compared to Sn-free Pt/CeO2. Although the extent of hydrogen spillover on Pt–Sn/Sn–Ce–O with high Sn concentration is comparable to Pt/CeO2, the reverse oxygen spillover is substantially suppressed on these samples

    Phosphorus poisoning during wet oxidation of methane over Pd@CeO2/graphite model catalysts

    Get PDF
    10siThe influence of phosphorus and water on methane catalytic combustion was studied over Pd@CeO2 model catalysts supported on graphite, designed to be suitable for X-ray Photoelectron Spectroscopy/Synchrotron Radiation Photoelectron Spectroscopy (XPS/SRPES) analysis. In the absence of P, the catalyst was active for the methane oxidation reaction, although introduction of 15% H2O to the reaction mixture did cause reversible deactivation. In the presence of P, both thermal and chemical aging treatments resulted in partial loss of activity due to morphological transformation of the catalyst, as revealed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) analysis. At 600 °C the combined presence of PO43− and water vapor caused a rapid, irreversible deactivation of the catalyst. XPS/SRPES analysis, combined with operando X-ray Absorption Near Edge Structure (XANES) and AFM measurements, indicated that water induces severe aggregation of CeO2 nanoparticles, exposure of CePO4 on the outer layer of the aggregates and incorporation of the catalytic-active Pd nanoparticles into the bulk. This demonstrates a temperature-activated process for P-poisoning of oxidation catalysts in which water vapor plays a crucial role.partially_openembargoed_20171009Monai, Matteo; Montini, Tiziano; Melchionna, Michele; Duchoň, Tomáš; Kúš, Peter; Tsud, Nataliya; Prince, Kevin C.; Matolin, Vladimir; Gorte, Raymond J.; Fornasiero, PaoloMonai, Matteo; Montini, Tiziano; Melchionna, Michele; Duchoň, Tomáš; Kúš, Peter; Tsud, Nataliya; Prince, Kevin C.; Matolin, Vladimir; Gorte, Raymond J.; Fornasiero, Paol

    Reactivity of atomically dispersed Pt2+ species towards H2: model Pt–CeO2 fuel cell catalyst

    Get PDF
    The reactivity of atomically dispersed Pt2+ species on the surface of nanostructured CeO2 films and the mechanism of H2 activation on these sites have been investigated by means of synchrotron radiation photoelectron spectroscopy and resonant photoemission spectroscopy in combination with density functional calculations. Isolated Pt2+ sites are found to be inactive towards H2 dissociation due to high activation energy required for H–H bond scission. Trace amounts of metallic Pt are necessary to initiate H2 dissociation on Pt–CeO2 films. H2 dissociation triggers the reduction of Ce4+ cations which, in turn, is coupled with the reduction of Pt2+ species. The mechanism of Pt2+ reduction involves reverse oxygen spillover and formation of oxygen vacancies on Pt–CeO2 films. Our calculations suggest the existence of a threshold concentration of oxygen vacancies associated with the onset of Pt2+ reduction

    Selective electrooxidation of 2-propanol on Pt nanoparticles supported on Co3O4: an in-situ study on atomically defined model systems

    Get PDF
    2-Propanol and its dehydrogenated counterpart acetone can be used as a rechargeable electrofuel. The concept involves selective oxidation of 2-propanol to acetone in a fuel cell coupled with reverse catalytic hydrogenation of acetone to 2-propanol in a closed cycle. We studied electrocatalytic oxidation of 2-propanol on complex model Pt/Co3O4(111) electrocatalysts prepared in ultra-high vacuum and characterized by scanning tunneling microscopy. The electrocatalytic behavior of the model electrocatalysts has been investigated in alkaline media (pH 10, phosphate buffer) by means of electrochemical infrared reflection absorption spectroscopy and ex-situ emersion synchrotron radiation photoelectron spectroscopy as a function of Pt particle size and compared with the electrocatalytic behavior of Pt(111) and pristine Co3O4(111) electrodes under similar conditions. We found that the Co3O4(111) film is inactive towards electrochemical oxidation of 2-propanol under the electrochemical conditions (0.3–1.1 VRHE). The electrochemical oxidation of 2-propanol readily occurs on Pt(111) yielding acetone at an onset potential of 0.4 VRHE. The reaction pathway does not involve CO but yields strongly adsorbed acetone species leading to a partial poisoning of the surface sites. On model Pt/Co3O4(111) electrocatalysts, we observed distinct metal support interactions and particle size effects associated with the charge transfer at the metal/oxide interface. We found that ultra-small Pt particles (around 1 nm and below) consist of partially oxidized Pt δ + species which show minor activity towards 2-propanol oxidation. In contrast, conventional Pt particles (particle size of a few nm) are mainly metallic and show high activity toward 2-propanol oxidation

    The effect of sulfur dioxide on the activity of hierarchical Pd-based catalysts in methane combustion

    Get PDF
    SO2 poisoning of methane oxidation over alumina-supported, Pd@CexZr1-xO2 nanoparticle catalysts was systematically studied by means of advanced PhotoElectron Spectroscopy (PES) methods. The Pd@CexZr1-xO2 units were synthesized and deposited on two modified-alumina supports, i.e. high surface area modified alumina and a model alumina prepared by Atomic Layer Deposition (ALD) of alumina on Indium Tin Oxide (ITO)/quartz slides. The model support was designed to be suitable for PES analysis and was stable to high temperature treatments (850 degrees C). Characterization of the high-surface-area (HSA) catalysts by X-Ray Diffraction (XRD), N-2 physisorption, CO chemisorption and Transmission Electron Microscopy (TEM) indicated formation of CeO2-ZrO2 (CZ) mixed-oxide crystallites that stabilize the Pd active phase against sintering. Correlation of methane-oxidation rates with PES results demonstrated two distinct mechanisms for deactivation by SO2. Below 450 degrees C, the presence of SO2 in the feed led to partial reduction of the active PdO phase and to the formation of sulfates on the Pd. Above 500 degrees C, poisoning by SO2 was less severe due to spillover of the sulfates onto the oxide promoter. Pd@ZrO2 catalysts showed the best resistance to SO2 poisoning, outperforming analogous Pd@CZ mixed-oxide catalysts, because there was less sulfate formation and the sulfates that did form could be removed during regeneration
    corecore