22 research outputs found

    Toward Operando Characterization of Interphases in Batteries

    Get PDF
    Electrode/electrolyte interfaces are the most importantand leastunderstood components of Li-ion and next-generation batteries. Animproved understanding of interphases in batteries will undoubtedlylead to breakthroughs in the field. Traditionally, evaluating thoseinterphases involves using ex situ surface sensitiveand/or imaging techniques. Due to their very dynamic and reactivenature, ex situ sample manipulation is undesirable.From this point of view, operando surface sensitivetechniques represent a major opportunity to push boundaries in batterydevelopment. While numerous bulk spectroscopic, scattering, and imagingtechniques are well established and widely used, surface sensitive operando techniques remain challenging and, to a largerextent, restricted to the model systems. Here, we give a perspectiveon techniques with the potential to characterize solid/liquid interfacesin both model and realistic battery configurations. The focus is ontechniques that provide chemical and structural information at lengthand time scales relevant for the solid electrolyte interphase (SEI)formation and evolution, while also probing representative electrodeareas. We highlight the following techniques: vibrational spectroscopy,X-ray photoelectron spectroscopy (XPS), neutron and X-ray reflectometry,and grazing incidence scattering techniques. Comprehensive overviews,as well as promises and challenges, of these techniques when used operando on battery interphases are discussed in detail

    Review - Reference Electrodes in Li-Ion and Next Generation Batteries: Correct Potential Assessment, Applications and Practices

    Get PDF
    This review provides an accessible analysis of the processes on reference electrodes and their applications in Li-ion and next generation batteries research. It covers fundamentals and definitions as well as specific practical applications and is intended to be comprehensible for researchers in the battery field with diverse backgrounds. It covers fundamental concepts, such as two- and three-electrodes configurations, as well as more complex quasi- or pseudo- reference electrodes. The electrode potential and its dependance on the concentration of species and nature of solvents are explained in detail and supported by relevant examples. The solvent, in particular the cation solvation energy, contribution to the electrode potential is important and a largely unknown issue in most the battery research. This effect can be as high as half a volt for the Li/Li+ couple and we provide concrete examples of the battery systems where this effect must be taken into account. With this review, we aim to provide guidelines for the use and assessment of reference electrodes in the Li-ion and next generation batteries research that are comprehensive and accessible to an audience with a diverse scientific background

    Neutron Reflectometry Study of Solid Electrolyte Interphase Formation in Highly Concentrated Electrolytes

    Get PDF
    Highly concentrated electrolytes have been found to improve the cycle life and Coulombic efficiency of lithium metal anodes, as well as to suppress dendrite growth. However, the mechanism for these improvements is not well understood. Partly, this can be linked to the difficulty of accurately characterizing the solid electrolyte interphase (SEI), known to play an important role for anode stability and stripping/plating efficiency. Herein, in situ neutron reflectometry is used to obtain information about SEI formation in a highly concentrated ether-based electrolyte. With neutron reflectometry, the thickness, scattering length density (SLD), and roughness of the SEI layer formed on a Cu working electrode are nondestructively probed. The reflectivity data point to the formation of a thin (5 nm) SEI in the highly concentrated electrolyte (salt:solvent ratio 1:2.2), while a considerably thicker (13 nm) SEI is formed in an electrolyte at lower salt concentration (salt:solvent ratio 1:13.7). Further, the SEI formed in the electrolyte with high salt concentration has a higher SLD, suggesting that the chemical composition of the SEI changes. The results from neutron reflectometry correlate well with the electrochemical data from SEI formation

    The correct assessment of standard potentials of reference electrodes in non-aqueous solution

    Get PDF
    The challenges facing metal-air batteries have prompted fundamental studies of non-aqueous electrochemistry. However it appears that contributors in the field are not aware that the potentials of Li/Li+, Na/Na+, K/K+, and Mg/Mg2+ electrodes depend on the nature of solvent due to the cation solvation. Therefore, it is imperative to define a clear potential scale that can be correlated in different solvents. Here we report on the strong effect of the solvent on the Li/Li+ redox potential and discuss the use of the ferrocene/ferrocenium couple as internal or external standard for the measurements in non-aqueous solvents in lithium-ion and lithium-02 battery systems.Fil: Mozhzhukhina, Nataliia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Calvo, Ernesto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Operando Monitoring the Insulator-Metal Transition of LiCoO2

    No full text
    LiCoO2 (LCO) is one of the most-widely used cathode active materials for Li-ion batteries. Even though the material undergoes an electronic two-phase transition upon Li-ion cell charging, LCO exhibits competitive performance in terms of rate capability. Herein the insulator-metal transition of LCO is investigated by operando Raman spectroscopy complemented with DFT calculations and a newly-developed sampling volume model. We confirm the presence of a Mott insulator α-phase at dilute Li-vacancy concentrations (x > 0.87) that transforms into a metallic β-phase at x LCO (~C/10). The observations explain why LCO exhibits competitive rate capabilities despite being observed to undergo an intuitively slow two-phase transition route: a kinetically faster solid-solution transition route becomes available when the active material is cycled at rates >C/10. Operando Raman spectroscopy combined with sample volume modelling and DFT calculations is shown to provide unique insights into fundamental processes governing the performance of state-of-the-art cathode materials for Li-ion batteries

    Infrared spectroscopy studies on stability of dimethyl sulfoxide for application in a LI-air battery

    Get PDF
    In situ infrared subtractive normalized Fourier transform infrared spectroscopy (SNIFTIRS) experiments performed simultaneously with the electroreduction of oxygen on gold and platinum cathodes in LiPF6 dimethyl sulfoxide (DMSO) electrolyte have shown that the solvent is stable with respect to nucleophilic attack by the electrogenerated superoxide radical anion. However, long-term experiments with KO2 solutions in DMSO have shown a slow formation of dimethyl sulfone. Evidence of dimethyl sulfone formation by anodic oxidation of DMSO above 4.2 V (Li/Li+) in the presence of trace water has been obtained on gold. On platinum, this unwanted reaction in the charging cycle of a lithium−air battery takes place at lower potentials, i.e., 3.5 V.Fil: Mozhzhukhina, Nataliia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Méndez de Leo, Lucila Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; ArgentinaFil: Calvo, Ernesto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires; Argentin

    A conductivity study of preferential solvation of lithium ion in acetonitrile-dimethyl sulfoxide mixtures

    No full text
    The electrical mobility of LiPF6 in acetonitrile–dimethyl sulfoxide (ACN–DMSO) mixtures, a potential electrolyte in oxygen cathodes of lithium-air batteries, has been studied using a very precise conductance technique, which allowed the determination of the infinite dilution molar conductivity and association constant of the salt in the whole composition range. In the search for preferential Li+ ion solvation, we also measured the electrical conductivity of tetrabutylammonium hexafluorophosphate (TBAPF6), a salt formed by a bulky cation, over the same composition range. The results show a qualitative change in the curvature of the LiPF6 molar conductivity composition dependence for ACN molar fraction (xACN) ∼ 0.95, which was not observed for TBAPF6. The dependence of the measured Li/Li+ couple potential with solvent composition also showed a pronounced change around the same composition. We suggest that these observations can be explained by Li+ ion preferential solvation by DMSO in ACN–DMSO mixtures with very low molar fractions of DMSO.Fil: Mozhzhukhina, Nataliia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Longinotti, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Corti, Horacio Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Calvo, Ernesto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin

    Communication : Lithium Ion Concentration Effect in PYR 14 TFSI Ionic Liquid for Li-O 2 Battery Cathodes

    Get PDF
    The oxygen reduction reaction (ORR) has been studied on Au cathodes in O2 saturated PYR14TFSI ionic liquid (IL) electrolyte using cyclic voltammetry, rotating ring disc electrode (RRDE), electrochemical quartz crystal microbalance (EQCM) and differential electrochemical mass spectrometry (DEMS). At different Li+ concentrations in the IL competition of Li+ and PYR14 + for superoxide ion results in dismutation of Li+O2 − and formation of insoluble Li2O2.Fil: Mozhzhukhina, Nataliia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Tesio, Alvaro Yamil. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: del Pozo, Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Calvo, Ernesto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentin
    corecore