1,594 research outputs found

    Chronic nitrite treatment activates adenosine monophosphate-activated protein kinase-endothelial nitric oxide synthase pathway in human aortic endothelial cells

    Get PDF
    Endothelial dysfunction, with impaired bioavailability and/or bioactivity of the vasoprotective molecule, nitric oxide, appears to be a vital step in the initiation of atherosclerosis. Several studies have shown that dietary nitrate/nitrite can have significant benefits on human cardiovascular homeostasis. Although serum nitrite concentrations can reach micromolar levels, the physiological significance of nitrate/nitrite in normal tissues has not been fully elucidated. We investigated in vitro the chronic effects of nitrate/nitrite on endothelial nitric oxide synthase (eNOS) to determine the potential vasoprotective effects of nitrate/nitrite and the underlying molecular mechanisms. Our results demonstrate the expression of phosphorylated eNOS at Ser1177 and phosphorylated adenosine monophosphate activated protein kinase (AMPK) at Thr172 in human aortic endothelial cells were increased after nitrite treatment. We suggest that nitrite stimulation may enhance eNOS activation, which is due, in part, to AMPK activation. The AMPKā€“eNOS activation by nitrite may be a possible molecular mechanism underlying the vascular protective effects of dietary nitrate

    Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    Get PDF
    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype

    The pH-responsive PacC transcription factor of Aspergillus fumigatus governs epithelial entry and tissue invasion during pulmonary aspergillosis

    Get PDF
    Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Raw data have been deposited in the Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE54810. Funding: This work was supported in part by grants to EMB from the MRC (G0501164) and BBSRC (BB/G009619/1), to EMB and NDR from the Wellcome Trust (WT093596MA), to MB from Imperial College London (Division of Investigative Sciences PhD Studentship), to HH from the ERA-NET PathoGenoMics project TRANSPAT, Austrian Science Foundation (FWF I282-B09), to SGF from the National Institutes of Health, USA (R01AI073829). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    Get PDF
    Electronegative ion thrusters are a variation of tradition gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. Following the continued development of electronegative ion thruster technology as exhibited by the PEGASES (Plasma Propulsion with Electronegative GASES) thruster, direct thrust measurements are required to push interest in electronegative ion thruster technology forward. For this work, direct thrust measurements of the MINT (Marshall's Ion-ioN Thruster) will be taken on a hanging pendulum thrust stand for propellant mixtures of Sulfur Hexafluoride and Argon at volumetric flow rates of 5-25 sccm at radio frequency power levels of 100-600 watts at a radio frequency of 13.56 MHz. Acceleration grid operation is operated using a square waveform bias of +/-300 volts at a frequency of 25 kHz

    Recon 2.2: from reconstruction to model of human metabolism.

    Get PDF
    IntroductionThe human genome-scale metabolic reconstruction details all known metabolic reactions occurring in humans, and thereby holds substantial promise for studying complex diseases and phenotypes. Capturing the whole human metabolic reconstruction is an on-going task and since the last community effort generated a consensus reconstruction, several updates have been developed.ObjectivesWe report a new consensus version, Recon 2.2, which integrates various alternative versions with significant additional updates. In addition to re-establishing a consensus reconstruction, further key objectives included providing more comprehensive annotation of metabolites and genes, ensuring full mass and charge balance in all reactions, and developing a model that correctly predicts ATP production on a range of carbon sources.MethodsRecon 2.2 has been developed through a combination of manual curation and automated error checking. Specific and significant manual updates include a respecification of fatty acid metabolism, oxidative phosphorylation and a coupling of the electron transport chain to ATP synthase activity. All metabolites have definitive chemical formulae and charges specified, and these are used to ensure full mass and charge reaction balancing through an automated linear programming approach. Additionally, improved integration with transcriptomics and proteomics data has been facilitated with the updated curation of relationships between genes, proteins and reactions.ResultsRecon 2.2 now represents the most predictive model of human metabolism to date as demonstrated here. Extensive manual curation has increased the reconstruction size to 5324 metabolites, 7785 reactions and 1675 associated genes, which now are mapped to a single standard. The focus upon mass and charge balancing of all reactions, along with better representation of energy generation, has produced a flux model that correctly predicts ATP yield on different carbon sources.ConclusionThrough these updates we have achieved the most complete and best annotated consensus human metabolic reconstruction available, thereby increasing the ability of this resource to provide novel insights into normal and disease states in human. The model is freely available from the Biomodels database (http://identifiers.org/biomodels.db/MODEL1603150001)

    Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome

    Full text link
    Rationale: Bronchoalveolar lavage fluid (BAL) from human lung allografts demonstrates the presence of a multipotentmesenchymal stromal cell population. However, the clinical relevance of this novel cellular component of BAL and its association with bronchiolitis obliterans syndrome (BOS), a disease marked by progressive airflow limitation secondary to fibrotic obliteration of the small airways, remains to be determined. Objectives: In this study we investigate the association of number of mesenchymal stromal cells in BAL with development of BOS in human lung transplant recipients. Methods:Mesenchymal colony-forming units (CFUs)were quantitated in a cohort of 405 BAL samples obtained from 162 lung transplant recipients. Poisson generalized estimating equations were used to determine the predictors of BAL mesenchymal CFU count. Measurements and Main Results: Higher CFU counts were noted early post-transplantation; time from transplant to BAL of greater than 3 months predicted 0.4-fold lower CFU counts (P = 0.0001). BOS diagnosis less than or equal to 365 days before BAL was associated with a 2.11-fold higher CFU count (P = 0.02). There were 2.62- and 2.70-fold higher CFU counts noted in the presence of histologic diagnosis of bronchiolitis obliterans (P = 0.05) and organizing pneumonia (0.0003), respectively. In BAL samples obtained from BOS-free patients greater than 6 months post-transplantation (n = 173), higher mesenchymal CFU counts (>=10) significantly predicted BOS onset in both univariate (hazard ratio, 5.61; 95%CI, 3.03ā€“10.38; P < 0.0001) andmultivariate (hazard ratio, 5.02; 95%CI, 2.40ā€“10.51; P < 0.0001) Cox regression analysis. Conclusions: Measurement of mesenchymal CFUs in the BAL provides predictive information regarding future BOS onset.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91951/1/2011 AJRCCM Mesenchymal stromal cells in bronchoalveolar lavage as predictors of bronchiolitis obliterans syndrome.pd
    • ā€¦
    corecore