267 research outputs found

    Permanent Neonatal Diabetes in a Patient with a KCNJ11/Q52R Mutation Accompanied by Intermittent Hypoglycemia and Liver Failure

    Get PDF
    The most common monogenic cause of neonatal diabetes is mutation in KCNJ11, which encodes a potassium channel in pancreatic beta cells. Some mutations in this gene, including Q52R, have been described in association with neurological deficits, but never with hepatic involvement. We report the second case of neonatal diabetes in a patient with a KCNJ11/Q52R mutation. This patient's clinical course did not include obvious neurological deficits despite the presence of prematurity, but did include transient hyperbilirubinemia, and recurrent hypoglycemia. The phenotypic spectrum of KCNJ11 mutations is variable and is likely influenced by additional genetic and environmental factors

    Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine

    Get PDF
    Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A

    GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography.

    Get PDF
    To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain

    GABAergic cortical network physiology in frontotemporal lobar degeneration.

    Get PDF
    The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients' GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials

    Neurophysiological consequences of synapse loss in progressive supranuclear palsy

    Get PDF
    Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from clinical to preclinical models of pathology, and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations like electro- and magneto-encephalography. Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by [11C]UCB-J positron emission tomography, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson's syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild cortical atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using parametric empirical Bayesian inversion of a conductance-based canonical microcircuit model of magnetoencephalography data, we show that the inclusion of regional synaptic density-as a subject-specific prior on laminar specific neuronal populations-markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology, and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology

    Oestrogen blocks the nuclear entry of SOX9 in the developing gonad of a marsupial mammal

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hormones are critical for early gonadal development in nonmammalian vertebrates, and oestrogen is required for normal ovarian development. In contrast, mammals determine sex by the presence or absence of the <it>SRY </it>gene, and hormones are not thought to play a role in early gonadal development. Despite an XY sex-determining system in marsupial mammals, exposure to oestrogen can override <it>SRY </it>and induce ovarian development of XY gonads if administered early enough. Here we assess the effect of exogenous oestrogen on the molecular pathways of mammalian gonadal development.</p> <p>Results</p> <p>We examined the expression of key testicular (<it>SRY</it>, <it>SOX9</it>, <it>AMH </it>and <it>FGF9</it>) and ovarian (<it>WNT4</it>, <it>RSPO1</it>, <it>FOXL2 </it>and <it>FST</it>) markers during gonadal development in the marsupial tammar wallaby (<it>Macropus eugenii</it>) and used these data to determine the effect of oestrogen exposure on gonadal fate. During normal development, we observed male specific upregulation of <it>AMH </it>and <it>SOX9 </it>as in the mouse and human testis, but this upregulation was initiated before the peak in <it>SRY </it>expression and 4 days before testicular cord formation. Similarly, key genes for ovarian development in mouse and human were also upregulated during ovarian differentiation in the tammar. In particular, there was early sexually dimorphic expression of <it>FOXL2 </it>and <it>WNT4</it>, suggesting that these genes are key regulators of ovarian development in all therian mammals. We next examined the effect of exogenous oestrogen on the development of the mammalian XY gonad. Despite the presence of <it>SRY</it>, exogenous oestrogen blocked the key male transcription factor SOX9 from entering the nuclei of male somatic cells, preventing activation of the testicular pathway and permitting upregulation of key female genes, resulting in ovarian development of the XY gonad.</p> <p>Conclusions</p> <p>We have uncovered a mechanism by which oestrogen can regulate gonadal development through the nucleocytoplasmic shuttling of SOX9. This may represent an underlying ancestral mechanism by which oestrogen promotes ovarian development in the gonads of nonmammalian vertebrates. Furthermore, oestrogen may retain this function in adult female mammals to maintain granulosa cell fate in the differentiated ovary by suppressing nuclear translocation of the SOX9 protein.</p> <p>See commentary: http://www.biomedcentral.com/1741-7007/8/110</p

    ‘Instead of fetching flowers, the youths brought in flakes of snow’: exploring extreme weather history through English parish registers

    Get PDF
    Parish registers provide organized, dated and located population data and as such, are routinely among the most frequently consulted documents within the holdings of county record offices and archives. Throughout history, extreme weather has had significant impacts on the church, its congregation, and local landscape. It is for these reasons that extreme weather events have been deemed worthy of official note by authors of many registers. Although isolated entries have been used as supporting evidence for the occurrence of a number of historic extreme weather events, the information that parish registers contain relating to weather history has not been studied in its own right. Parish register narratives add new events to existing chronologies of extreme weather events and contribute to our understanding of their impacts at the local level. As public and well used documents they also function to keep the memory of particular events alive. The examples in this paper cover a wide range of weather types, places, and time periods, also enabling recording practice to be explored. Finally, as the number of digitized registers increases, we highlight the risks of weather narratives being obscured, and reflect on how the weather history contained within might be systematically captured
    corecore