75 research outputs found

    Duodenal intraepithelial lymphocytes of children with cow milk allergy preferentially bind the glycan-binding protein galectin-3

    Get PDF
    A breakdown in intestinal homeostasis results in inflammatory bowel diseases including coeliac disease and allergy. Galectins, evolutionarily conserved beta-galactoside-binding proteins, can modulate immune-epithelial cell interactions by influencing immune cell fate and cytokine secretion. In this study we investigated the glycosylation signature, as well as the regulated expression of galectin-1 and -3 in human duodenal samples of allergic and non-allergic children. Whereas galectin-1 was predominantly localized in the epithelial compartment (epithelial cells and intraepithelial lymphocytes) and the underlying lamina propria (T cells, macrophages and plasma cells), galectin-3 was mainly expressed by crypt epithelial cells and macrophages in the lamina propria. Remarkably, expression of these galectins was not significantly altered in allergic versus non-allergic patients. Investigation of the glycophenotype of the duodenal inflammatory microenvironment revealed substantial alpha2-6-linked sialic acid bound to galactose in lamina propria plasma cells, macrophages and intraepithelial lymphocytes and significant levels of asialo core 1 O-glycans in CD68+ macrophages and enterocytes. Galectin-1 preferentially bound to neutrophils, plasma cells and enterocytes, while galectin-3 binding sites were mainly distributed on macrophages and intraepithelial lymphocytes. Notably, galectin-3, but not galectin-1 binding, was substantially increased in intraepithelial gut lymphocytes of allergic patients compared to non-allergic subjects, suggesting a potential role of galectin-3-glycan interactions in shaping epithelial-immune cell connections during allergic inflammatory processes.Fil: Mercer, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Guzman, Luciana. Provincia de Buenos Aires. Ministerio de Salud. Hospital de Niños "Sor María Ludovica" de la Plata; ArgentinaFil: Cueto Rua, Eduardo. Provincia de Buenos Aires. Ministerio de Salud. Hospital de Niños "Sor María Ludovica" de la Plata; ArgentinaFil: Drut, Ricardo. Provincia de Buenos Aires. Ministerio de Salud. Hospital de Niños "Sor María Ludovica" de la Plata; ArgentinaFil: Ahmed, H.. University of Maryland; Estados UnidosFil: Vasta, G. R.. University of Maryland; Estados UnidosFil: Toscano, Marta Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Docena, Guillermo H.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentin

    AGE-R3/galectin-3 expression in osteoblast-like cells: Regulation by AGEs

    Get PDF
    The accumulation of irreversible advanced glycation endproducts (AGEs) on long-lived proteins, and the interaction of AGEs with cellular receptors such as AGE-R3/galectin-3 and RAGE, are considered to be key events in the development of longterm complications of diabetes mellitus, Alzheimer’s disease, uremia and ageing. The aim of this study was to investigate the expression and sub-cellular distribution of galectin-3, as well as its possible modulation by AGEs, in MC3T3E1 mouse calvaria-derived osteoblasts and in UMR 106 rat osteosarcoma cells. Both osteoblastic lines were cultured either with control bovine serum albumin (BSA) or with AGEs-BSA for 48 h. Cells were evaluated for galectin-3 expression by fixing and immunofluorescent microscopic analysis; or Western blot analysis of whole cell extracts, sub-cellular fractions and culture media. Both cell lines express 30 kDa (monomeric) galectin-3, although expression was about 15-fold lower in the UMR106 osteosarcoma cells. Dimeric (70 kDa) galectin-3 was additionally observed in the UMR106 cells. Immunofluorescent analysis of galectin-3 distribution showed a diffuse cytoplasmic and strong nuclear pattern in MC3T3E1 osteoblasts, and a patchy cytoplasmic pattern in UMR106 cells. Western blot analysis for both cell lines showed that galectin-3 was mainly found in the cytoplasm and in minor amounts in the microsomal fraction, while considerable amounts were secreted into the culture media. Exposure to 100–200 μg/mL AGEs-BSA increased the cellular content of 30 kDa galectin-3 (20–25% for MC3T3E1 and 35–70% for UMR106 versus control BSA, p < 0.05), and decreased the culture media levels of galectin-3 (10–20% for MC3T3E1 and for UMR106 versus control BSA, p < 0.05). These results confirm the expression of galectin-3 in osteoblastic cells, and suggest different levels and sub-cellular distribution of this protein in transformed versus non-transformed osteoblasts. Osteoblastic exposure to AGEs alters their expression and secretion of galectin-3, which could have significant consequences on osteoblast metabolism and thus on bone turnover.Laboratorio de Investigación en Osteopatías y Metabolismo Minera

    AGE-R3/galectin-3 expression in osteoblast-like cells: Regulation by AGEs

    Get PDF
    The accumulation of irreversible advanced glycation endproducts (AGEs) on long-lived proteins, and the interaction of AGEs with cellular receptors such as AGE-R3/galectin-3 and RAGE, are considered to be key events in the development of longterm complications of diabetes mellitus, Alzheimer’s disease, uremia and ageing. The aim of this study was to investigate the expression and sub-cellular distribution of galectin-3, as well as its possible modulation by AGEs, in MC3T3E1 mouse calvaria-derived osteoblasts and in UMR 106 rat osteosarcoma cells. Both osteoblastic lines were cultured either with control bovine serum albumin (BSA) or with AGEs-BSA for 48 h. Cells were evaluated for galectin-3 expression by fixing and immunofluorescent microscopic analysis; or Western blot analysis of whole cell extracts, sub-cellular fractions and culture media. Both cell lines express 30 kDa (monomeric) galectin-3, although expression was about 15-fold lower in the UMR106 osteosarcoma cells. Dimeric (70 kDa) galectin-3 was additionally observed in the UMR106 cells. Immunofluorescent analysis of galectin-3 distribution showed a diffuse cytoplasmic and strong nuclear pattern in MC3T3E1 osteoblasts, and a patchy cytoplasmic pattern in UMR106 cells. Western blot analysis for both cell lines showed that galectin-3 was mainly found in the cytoplasm and in minor amounts in the microsomal fraction, while considerable amounts were secreted into the culture media. Exposure to 100–200 μg/mL AGEs-BSA increased the cellular content of 30 kDa galectin-3 (20–25% for MC3T3E1 and 35–70% for UMR106 versus control BSA, p < 0.05), and decreased the culture media levels of galectin-3 (10–20% for MC3T3E1 and for UMR106 versus control BSA, p < 0.05). These results confirm the expression of galectin-3 in osteoblastic cells, and suggest different levels and sub-cellular distribution of this protein in transformed versus non-transformed osteoblasts. Osteoblastic exposure to AGEs alters their expression and secretion of galectin-3, which could have significant consequences on osteoblast metabolism and thus on bone turnover.Laboratorio de Investigación en Osteopatías y Metabolismo Minera

    Effect of biotic and abiotic factors on in vitro proliferation, encystment, and excystment of Pfiesteria piscicida

    Get PDF
    Pfiesteria spp. are mixotrophic armored dinoflagellates populating the Atlantic coastal waters of the United States. They have been a focus of intense research due to their reported association with several fish mortality events. We have now used a clonal culture of Pfiesteria piscicida and several new environmental isolates to describe growth characteristics, feeding, and factors contributing to the encystment and germination of the organism in both laboratory and environmental samples. We also discuss applied methods of detection of the different morphological forms of Pfiesteria in environmental samples. In summary, Pfiesteria, when grown with its algal prey, Rhodomonas sp., presents a typical growth curve with lag, exponential, and stationary phases, followed by encystment. The doubling time in exponential phase is about 12 h. The profiles of proliferation under a standard light cycle and in the dark were similar, although the peak cell densities were markedly lower when cells were grown in the dark. The addition of urea, chicken manure, and soil extracts did not enhance Pfiesteria proliferation, but crude unfiltered spent aquarium water did. Under conditions of food deprivation or cold (4°C), Pfiesteria readily formed harvestable cysts that were further analyzed by PCR and scanning electron microscopy. The germination of Pfiesteria cysts in environmental sediment was enhanced by the presence of live fish: dinospores could be detected 13 to 15 days earlier and reached 5- to 10-times-higher peak cell densities with live fish than with artificial seawater or f/2 medium alone. The addition of ammonia, urea, nitrate, phosphate, or surprisingly, spent fish aquarium water had no effect.Facultad de Ciencias Exacta

    Duodenal intraepithelial lymphocytes of children with cow milk allergy preferentially bind the glycan-binding protein galectin-3

    Get PDF
    A breakdown in intestinal homeostasis results in inflammatory bowel diseases including coeliac disease and allergy. Galectins, evolutionarily conserved beta-galactoside-binding proteins, can modulate immune-epithelial cell interactions by influencing immune cell fate and cytokine secretion. In this study we investigated the glycosylation signature, as well as the regulated expression of galectin-1 and -3 in human duodenal samples of allergic and non-allergic children. Whereas galectin-1 was predominantly localized in the epithelial compartment (epithelial cells and intraepithelial lymphocytes) and the underlying lamina propria (T cells, macrophages and plasma cells), galectin-3 was mainly expressed by crypt epithelial cells and macrophages in the lamina propria. Remarkably, expression of these galectins was not significantly altered in allergic versus non-allergic patients. Investigation of the glycophenotype of the duodenal inflammatory microenvironment revealed substantial alpha2-6-linked sialic acid bound to galactose in lamina propria plasma cells, macrophages and intraepithelial lymphocytes and significant levels of asialo core 1 O-glycans in CD68+ macrophages and enterocytes. Galectin-1 preferentially bound to neutrophils, plasma cells and enterocytes, while galectin-3 binding sites were mainly distributed on macrophages and intraepithelial lymphocytes. Notably, galectin-3, but not galectin-1 binding, was substantially increased in intraepithelial gut lymphocytes of allergic patients compared to non-allergic subjects, suggesting a potential role of galectin-3-glycan interactions in shaping epithelial-immune cell connections during allergic inflammatory processes.Laboratorio de Investigaciones del Sistema Inmun

    2019 meeting of the global virus network

    Get PDF
    The Global Virus Network (GVN) was established in 2011 to strengthen research and responses to emerging viral causes of human disease and to prepare against new viral pandemics. There are now 52 GVN Centers of Excellence and 9 Affiliate laboratories in 32 countries. The 11th International GVN meeting was held from June 9–11, 2019 in Barcelona, Spain and was jointly organized with the Spanish Society of Virology. A common theme throughout the meeting was globalization and climate change. This report highlights the recent accomplishments of GVN researchers in several important areas of medical virology, including severe virus epidemics, anticipation and preparedness for changing disease dynamics, host-pathogen interactions, zoonotic virus infections, ethical preparedness for epidemics and pandemics, one health and antivirals.info:eu-repo/semantics/submittedVersio

    The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    Get PDF
    Abstract: Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals-1-) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals-1- mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.Facultad de Ciencias Exacta

    Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells

    Get PDF
    Advanced glycation end products (AGEs) have been proposed as the pathological mechanisms underlying diabetic chronic complications. They may also play a role in the pathogenesis of diabetic osteopenia, although their mechanisms of action remain unclear. We investigated the protein (immunofluorescence) and gene expression (realtime RT-PCR) of two receptors for AGEs, RAGE and galectin-3, as well as their regulation by AGEs, and the apoptotic effect on osteoblast-like cells (UMR106 and MC3T3E1) in culture. AGEs up-regulated the expression of RAGE and galectin-3 in both cells lines. These effects were accompanied by an increase in the corresponding mRNA in the non-tumoral MC3T3E1 but not in the osteosarcoma UMR106 cells. Finally, we demonstrated that a 24 h exposure to AGEs induced apoptosis in both cell lines. Thus, AGEs-receptors may play important roles in the bone alterations described in aging and diabetic patients.Laboratorio de Investigación en Osteopatías y Metabolismo Minera

    Regulation of advanced glycation end product (AGE) receptors and apoptosis by AGEs in osteoblast-like cells

    Get PDF
    Advanced glycation end products (AGEs) have been proposed as the pathological mechanisms underlying diabetic chronic complications. They may also play a role in the pathogenesis of diabetic osteopenia, although their mechanisms of action remain unclear. We investigated the protein (immunofluorescence) and gene expression (realtime RT-PCR) of two receptors for AGEs, RAGE and galectin-3, as well as their regulation by AGEs, and the apoptotic effect on osteoblast-like cells (UMR106 and MC3T3E1) in culture. AGEs up-regulated the expression of RAGE and galectin-3 in both cells lines. These effects were accompanied by an increase in the corresponding mRNA in the non-tumoral MC3T3E1 but not in the osteosarcoma UMR106 cells. Finally, we demonstrated that a 24 h exposure to AGEs induced apoptosis in both cell lines. Thus, AGEs-receptors may play important roles in the bone alterations described in aging and diabetic patients

    AGE-R3/galectin-3 expression in osteoblast-like cells: Regulation by AGEs

    Get PDF
    The accumulation of irreversible advanced glycation endproducts (AGEs) on long-lived proteins, and the interaction of AGEs with cellular receptors such as AGE-R3/galectin-3 and RAGE, are considered to be key events in the development of longterm complications of diabetes mellitus, Alzheimer’s disease, uremia and ageing. The aim of this study was to investigate the expression and sub-cellular distribution of galectin-3, as well as its possible modulation by AGEs, in MC3T3E1 mouse calvaria-derived osteoblasts and in UMR 106 rat osteosarcoma cells. Both osteoblastic lines were cultured either with control bovine serum albumin (BSA) or with AGEs-BSA for 48 h. Cells were evaluated for galectin-3 expression by fixing and immunofluorescent microscopic analysis; or Western blot analysis of whole cell extracts, sub-cellular fractions and culture media. Both cell lines express 30 kDa (monomeric) galectin-3, although expression was about 15-fold lower in the UMR106 osteosarcoma cells. Dimeric (70 kDa) galectin-3 was additionally observed in the UMR106 cells. Immunofluorescent analysis of galectin-3 distribution showed a diffuse cytoplasmic and strong nuclear pattern in MC3T3E1 osteoblasts, and a patchy cytoplasmic pattern in UMR106 cells. Western blot analysis for both cell lines showed that galectin-3 was mainly found in the cytoplasm and in minor amounts in the microsomal fraction, while considerable amounts were secreted into the culture media. Exposure to 100–200 μg/mL AGEs-BSA increased the cellular content of 30 kDa galectin-3 (20–25% for MC3T3E1 and 35–70% for UMR106 versus control BSA, p &amp;lt; 0.05), and decreased the culture media levels of galectin-3 (10–20% for MC3T3E1 and for UMR106 versus control BSA, p &amp;lt; 0.05). These results confirm the expression of galectin-3 in osteoblastic cells, and suggest different levels and sub-cellular distribution of this protein in transformed versus non-transformed osteoblasts. Osteoblastic exposure to AGEs alters their expression and secretion of galectin-3, which could have significant consequences on osteoblast metabolism and thus on bone turnover
    • …
    corecore