35 research outputs found

    Mycobacterium tuberculosis Cluster with Developing Drug Resistance, New York, New York, USA, 2003–2009

    Get PDF
    In 2004, identification of patients infected with the same Mycobacterium tuberculosis strain in New York, New York, USA, resulted in an outbreak investigation. The investigation involved data collection and analysis, establishing links between patients, and forming transmission hypotheses. Fifty-four geographically clustered cases were identified during 2003–2009. Initially, the M. tuberculosis strain was drug susceptible. However, in 2006, isoniazid resistance emerged, resulting in isoniazid-resistant M. tuberculosis among 17 (31%) patients. Compared with patients with drug-susceptible M. tuberculosis, a greater proportion of patients with isoniazid-resistant M. tuberculosis were US born and had a history of illegal drug use. No patients named one another as contacts. We used patient photographs to identify links between patients. Three links were associated with drug use among patients infected with isoniazid-resistant M. tuberculosis. The photographic method would have been more successful if used earlier in the investigation. Name-based contact investigation might not identify all contacts, particularly when illegal drug use is involved

    Structure-based design of MptpB inhibitors that reduce multi-drug-resistant mycobacterium tuberculosis survival and infection burden in vivo

    Get PDF
    Mycobacterium tuberculosis protein-tyrosine-phosphatase B (MptpB) is a secreted virulence factor that subverts antimicrobial activity in the host. We report here the structure-based design of selective MptpB inhibitors that reduce survival of multidrug-resistant tuberculosis strains in macrophages and enhance killing efficacy by first-line antibiotics. Monotherapy with an orally bioavailable MptpB inhibitor reduces infection burden in acute and chronic guinea pig models and improves the overall pathology. Our findings provide a new paradigm for tuberculosis treatmen

    Pre-detection history of extensively drug-resistant tuberculosis in KwaZulu-Natal, South Africa

    Get PDF
    Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating wholegenome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.The National Institute of Allergy and Infectious Disease and National Institutes of Health.https://www.pnas.orgpm2020Medical Microbiolog

    Targeted Hybridization of IS6110 Fingerprints Identifies the W-Beijing Mycobacterium tuberculosis Strains among Clinical Isolates

    No full text
    Targeted IS6110-based RFLP genotyping can be applied to rapidly identify specific groups of biomedically/epidemiologically relevant Mycobacterium tuberculosis clinical isolates. One such group is the W-Beijing strain family (also known as Beijing/W), implicated in significant nosocomial and community outbreaks worldwide. Using previously defined criteria, we developed a simple and accurate method to identify members of the W-Beijing family, based on rehybridization of Southern blot membranes used previously in routine IS6110 DNA fingerprint analysis. The hybridization probe constructed (“W-Beijing polyprobe”) contains the PCR-amplified fragments specific for three M. tuberculosis chromosomal loci used for the identification of W-Beijing strains. The targets include the dnaA-dnaN and NTF regions and the direct repeat locus. A total of 526 selected clinical isolates (representative of 253 different IS6110-defined strain types) were analyzed using the W-Beijing polyprobe. A total of 148 isolates from this collection were found to be members of the W-Beijing phylogenetic lineage, comprising 106 strains from the W-Beijing family (46 clusters) and 42 related isolates. Rehybridization results were confirmed by computer-assisted analysis. The sensitivity and specificity of this method were estimated at 98.7% and 99.7%, respectively. This study demonstrates that the W-Beijing polyprobe can accurately and reliably discriminate members of the W-Beijing phylogenetic lineage and the W-Beijing family of M. tuberculosis strains

    NTF-RINT, a new method for the epidemiological surveillance of MDR Mycobacterium tuberculosis L2/Beijing strains

    No full text
    The most widely discussed antibiotic-resistant tuberculosis strains ("W" and "B0/W148", "CAO") belong to L2/Beijing Lineage and are characterized by IS6110 insertion sequences at the NTF locus. We present a high-throughput, microbead-based method, called NTF-RINT for detection of IS in NTF and Rifampicin and Isoniazid Typing. This method provides tuberculosis diagnostic confirmation, screens for the so-called modern L2/Beijing sublineage and detects mutations involved in resistance to Rifampicin (RIF) and Isoniazid (INH)

    Identifying Mycobacterium tuberculosis Complex Strain Families using Spoligotypes

    No full text
    We present a novel approach for analysis of Mycobacterium tuberculosis complex (MTC) strain genotyping data. Our work presents a first step in an ongoing project dedicated to the development of decision support tools for tuberculosis (TB) epidemiologists exploiting both genotyping and epidemiological data. We focus on spacer oligonucleotide typing (spoligotyping), a genotyping method based on analysis of a direct repeat (DR) locus. We use mixture models to identify strain families of MTC based on their spoligotyping patterns. Our algorithm, SPOTCLUST, incorporates biological information on spoligotype evolution, without attempting to derive the full phylogeny of MTC. We applied our algorithm to 535 different spoligotype patterns identified among 7166 MTC strains isolated between 1996 and 2004 from New York State TB patients. Two models were employed and validated: a 36-component model based on global spoligotype database SpolDB3, and a randomly initialized model (RIM) containing 48 components. Our analysis both confirmed previously expert-defined families of MTC strains and suggested certain new families. SPOTCLUST, which is available online, can be further improved by incorporating data obtained using additional strain genetic markers and epidemiological information. We demonstrate on New York City (NYC) patient data how the resulting models can potentially form the basis of TB control tools using genotyping. 3 1

    Ultrasensitive Detection of Multidrug-Resistant Mycobacterium tuberculosis Using SuperSelective Primer-Based Real-Time PCR Assays

    No full text
    The emergence of drug-resistant tuberculosis is a significant global health issue. The presence of heteroresistant Mycobacterium tuberculosis is critical to developing fully drug-resistant tuberculosis cases. The currently available molecular techniques may detect one copy of mutant bacterial genomic DNA in the presence of about 1–1000 copies of wild-type M. tuberculosis DNA. To improve the limit of heteroresistance detection, we developed SuperSelective primer-based real-time PCR assays, which, by their unique assay design, enable selective and exponential amplification of selected point mutations in the presence of abundant wild-type DNA. We designed SuperSelective primers to detect genetic mutations associated with M. tuberculosis resistance to the anti-tuberculosis drugs isoniazid and rifampin. We evaluated the efficiency of our assay in detecting heteroresistant M. tuberculosis strains using genomic DNA isolated from laboratory strains and clinical isolates from the sputum of tuberculosis patients. Results show that our assays detected heteroresistant mutations with a specificity of 100% in a background of up to 104 copies of wild-type M. tuberculosis genomic DNA, corresponding to a detection limit of 0.01%. Therefore, the SuperSelective primer-based RT-PCR assay is an ultrasensitive tool that can efficiently diagnose heteroresistant tuberculosis in clinical specimens and contributes to understanding the drug resistance mechanisms. This approach can improve the management of antimicrobial resistance in tuberculosis and other infectious diseases

    Definition of the Beijing/W lineage of Mycobacterium tuberculosis on the basis of genetic markers.

    No full text
    Mycobacterium tuberculosis Beijing genotype strains are highly prevalent in Asian countries and in the territory of the former Soviet Union. They are increasingly reported in other areas of the world and are frequently associated with tuberculosis outbreaks and drug resistance. Beijing genotype strains, including W strains, have been characterized by their highly similar multicopy IS6110 restriction fragment length polymorphism (RFLP) patterns, deletion of spacers 1 to 34 in the direct repeat region (Beijing spoligotype), and insertion of IS6110 in the genomic dnaA-dnaN locus. In this study the suitability and comparability of these three genetic markers to identify members of the Beijing lineage were evaluated. In a well-characterized collection of 1,020 M. tuberculosis isolates representative of the IS6110 RFLP genotypes found in The Netherlands, strains of two clades had spoligotypes characteristic of the Beijing lineage. A set of 19 Beijing reference RFLP patterns was selected to retrieve all Beijing strains from the Dutch database. These reference patterns gave a sensitivity of 98.1% and a specificity of 99.7% for identifying Beijing strains (defined by spoligotyping) in an international database of 1,084 strains. The usefulness of the reference patterns was also assessed with large DNA fingerprint databases in two other European countries and for identification strains from the W lineage found in the United States. A standardized definition for the identification of M. tuberculosis strains belonging to the Beijing/W lineage, as described in this work, will facilitate further studies on the spread and characterization of this widespread genotype family of M. tuberculosis strains

    Differential mucosal tropism and dissemination of classical and hypervirulent Klebsiella pneumoniae infection

    No full text
    Summary: Klebsiella pneumoniae (Kp) infection is an important healthcare concern. The ST258 classical (c)Kp strain is dominant in hospital-acquired infections in North America and Europe, while ST23 hypervirulent (hv)Kp prevails in community-acquired infections in Asia. This study aimed to develop symptomatic mucosal infection models in mice that mirror natural infections in humans to gain a deeper understanding of Kp mucosal pathogenesis. We showed that cKp replicates in the nasal cavity instead of the lungs, and this early infection event is crucial for the establishment of chronic colonization in the cecum and colon. In contrast, hvKp replicates directly in the lungs to lethal bacterial load, and early infection of esophagus supported downstream transient colonization in the ileum and cecum. Here, we have developed an in vivo model that illuminates how differences in Kp tropism are responsible for virulence and disease phenotype in cKp and hvKp, providing the basis for further mechanistic study
    corecore