95 research outputs found

    Novel and revisited approaches in nanoparticle systems for buccal drug delivery

    Get PDF
    The buccal route is considered patient friendly due to its non-invasive nature and ease of administration. Such delivery route has been used as an alternative for the delivery of drugs that undergo first-pass metabolism or are susceptible to pH and enzymatic degradation, such as occurs in the gastrointestinal tract. However, the drug concentration absorbed in the buccal mucosa is often low to obtain an acceptable therapeutic effect, mainly due to the saliva turnover, tongue and masticatory movements, phonation, enzymatic degradation and lack of epithelium permeation. Therefore, the encapsulation of drugs into nanoparticles is an important strategy to avoid such problems and improve their buccal delivery. Different materials from lipids to natural or synthetic polymers and others have been used to protect and deliver drugs in a sustained, controlled or targeted manner, and enhance their uptake through the buccal mucosa improving their bioavailability and therapeutic outcome. Overall, the main aim of this review is to perform an overview about the nanotechnological approaches developed so far to improve the buccal delivery of drugs. Herein, several types of nanoparticles and delivery strategies are addressed, and a special focus on pipeline products is also given.info:eu-repo/semantics/acceptedVersio

    Deregulation of apoptosis-related genes is associated with PRV1 overexpression and JAK2 V617F allele burden in Essential Thrombocythemia and Myelofibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and <it>PRV1 </it>gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34<sup>+ </sup>hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, <it>PRV1 </it>overexpression, and clinical and laboratory parameters.</p> <p>Results</p> <p>By real time PCR assay, we observed that <it>A1, MCL1, BIK and BID</it>, as well as <it>A1, BCLW </it>and <it>BAK </it>gene expression were increased in ET and PMF CD34<sup>+ </sup>cells respectively, while pro-apoptotic <it>BAX </it>and anti-apoptotic <it>BCL2 </it>mRNA levels were found to be lower in ET and PMF CD34<sup>+ </sup>cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes <it>A1, BCL2, BCL-X<sub>L </sub></it>and <it>BCLW</it>. In contrast, pro-apoptotic <it>BID </it>and <it>BIM<sub>EL </sub></it>expression were downregulated in ET leukocytes. Increased BCL-X<sub>L </sub>protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and <it>BAX, BIK and BAD </it>gene expression and between <it>A1, BAX </it>and <it>BIK </it>and <it>PRV1 </it>gene expression. A negative correlation between <it>PRV1 </it>gene expression and platelet count was observed, as well as a positive correlation between <it>PRV1 </it>gene expression and splenomegaly.</p> <p>Conclusions</p> <p>Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, <it>PRV1 </it>and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.</p

    Morphological analysis and description of the ovaries of female silky sharks, Carcharhinus falciformis (Müller & Henle, 1839)

    Get PDF
    This work aims to study the female reproductive tract of silky sharks, Carcharhinus falciformis, captured in the South and Equatorial Atlantic Ocean. Samples were collected between January 2008 and March 2010 through oceanic commercial vessels that targeted tuna and swordfish, with a total of 17 females collected. The methodologies followed for analyzing the ovaries of those females included both macroscopic and histological analysis. Macroscopically, it was possible to determine that the ovaries on these sharks is suspended by mesenteries in the anterior section of the body cavity, heavily irrigated by blood vessels, and contains a wide range of oocytes. Ovaries were found in three distinct maturational stages: Stage I (Immature), Stage II (Maturing) and Stage III (Mature). Immature ovaries were small, with widths ranging from 1.0 to 3.1 cm, and had a gelatinous or granulose internal structure; maturing ovaries were slightly larger, ranging in width between 5.2 and 6.0 cm; mature ovaries ranged in width between 6.5 and 7.8 cm, and had a more rounded shape and the presence of large and well developed oocytes. Under microscopic examination, it was observed that the ovaries were covered with simple epithelial tissue during the early development stages and a simple cubic epithelium in the final stages of maturation. During the initial maturation stages the epigonal organ was not differentiated from the ovary. In mature specimens, the ovary showed a simple cubic epithelium and just below this epithelium there was a layer of dense connective tissue and muscle with the presence of vitellogenic oocytes and fat cells. A thin yolk membrane enclosing the oocytes was also evident. Finally, it was possible to distinguish a zona pellucida, separating the oocytes from the follicle wall and a basal lamina between the granular layers and the teak layer.info:eu-repo/semantics/publishedVersio

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    SARS-CoV-2 uses CD4 to infect T helper lymphocytes

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of a major global outbreak of respiratory tract disease known as Coronavirus Disease 2019 (COVID-19). SARS-CoV-2 infects mainly lungs and may cause several immune-related complications, such as lymphocytopenia and cytokine storm, which are associated with the severity of the disease and predict mortality. The mechanism by which SARS-CoV-2 infection may result in immune system dysfunction is still not fully understood. Here, we show that SARS-CoV-2 infects human CD4+ T helper cells, but not CD8+ T cells, and is present in blood and bronchoalveolar lavage T helper cells of severe COVID-19 patients. We demonstrated that SARS-CoV-2 spike glycoprotein (S) directly binds to the CD4 molecule, which in turn mediates the entry of SARS-CoV-2 in T helper cells. This leads to impaired CD4 T cell function and may cause cell death. SARS-CoV-2-infected T helper cells express higher levels of IL-10, which is associated with viral persistence and disease severity. Thus, CD4-mediated SARS-CoV-2 infection of T helper cells may contribute to a poor immune response in COVID-19 patients.</p
    corecore