12 research outputs found

    Effect of hemodialysis and peritoneal dialysis on redox status in chronic renal failure patients: a comparative study

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To investigate the effects of hemodialysis (HD) and periotoneal dialysis (PD) on oxidative stress in chronic renal failure patients (CRF).</p> <p>Methods</p> <p>20 HD patients (M/F: 8/12, 36 ± 12 years) and 20 PD patients (M/F: 10/10, 40 ± 8 years) were compared with 20 end stage renal failure patients (CRF) (M/F: 4/16, 61 ± 13 years).</p> <p>Results</p> <p>Thiobarbituric acid reactive substances (TBARS) values were elevated in HD and decreased in PD compared to CRF (P < 0.05). TBARS-VLDL and TBARS-HDL<sub>2 </sub>were decreased in HD and PD, compared to CRF (p < 0.05). TBARS-LDL were higher in HD compared to CRF (p < 0.05). No significant difference in TBARS-HDL<sub>3 </sub>values between the three groups. Carbonyls were increased in HD (p < 0.05) and PD (p < 0.01) compared to CRF. Plasma superoxide dismutase activity (SOD) was decreased in HD compared to CRF and PD (P < 0.05). Glutathion peroxidase activity (GSH-Px) was decreased in HD and PD (P < 0.005), compared to CRF. Decrease in catalase activity was noted only in PD compared to CRF (P < 0.05). An increase in nitric oxide was noted in HD compared to CRF (p < 0.05). Albumin concentrations were higher in HD and PD compared to CRF (P < 0.001). Whereas uric acid concentrations were decreased in HD (P < 0.001) compared to CRF and PD. Bilirubin values were similar in all groups. Increased values of iron were noted in HD and PD, compared to PD (p < 0.001).</p> <p>Conclusion</p> <p>HD and PD aggravate oxidative stress generated by uremia. HD accentuates lipid and protein peroxidation, while PD aggravates protein oxidation. However, the activity of antioxidant enzymes was altered by both dialysis treatments.</p

    Restoration of mGluR6 Localization Following AAV-Mediated Delivery in a Mouse Model of Congenital Stationary Night Blindness

    No full text
    International audiencePurpose: Complete congenital stationary night blindness (cCSNB) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. GRM6 mutations are the third most prevalent cause of cCSNB. The Grm6−/− mouse model mimics the human phenotype, showing no b-wave in the electroretinogram (ERG) and a loss of mGluR6 and other proteins of the same cascade at the outer plexiform layer (OPL). Our aim was to restore protein localization and function in Grm6−/− adult mice targeting specifically ON-BCs or the whole retina.Methods: Adeno-associated virus-encoding Grm6 under two different promoters (GRM6-Grm6 and CAG-Grm6) were injected intravitreally in P15 Grm6−/− mice. ERG recordings at 2 and 4 months were performed in Grm6+/+, untreated and treated Grm6−/− mice. Similarly, immunolocalization studies were performed on retinal slices before or after treatment using antibodies against mGluR6, TRPM1, GPR179, RGS7, RGS11, Gβ5, and dystrophin.Results: Following treatment, mGluR6 was localized to the dendritic tips of ON-BCs when expressed with either promoter. The relocalization efficiency in mGluR6-transduced retinas at the OPL was 2.5% versus 11% when the GRM6-Grm6 and CAG-Grm6 were used, respectively. Albeit no functional rescue was seen in ERGs, relocalization of TRPM1, GPR179, and Gβ5 was also noted using both constructs. The restoration of the localization of RGS7, RGS11, and dystrophin was more obvious in retinas treated with GRM6-Grm6 than in retinas treated with CAG-Grm6.Conclusions: Our findings show the potential of treating cCSNB with GRM6 mutations; however, it appears that the transduction rate must be improved to restore visual function

    Identification and characterization of novel TRPM1 autoantibodies from serum of patients with melanoma-associated retinopathy

    Get PDF
    Melanoma-associated retinopathy (MAR) is a rare paraneoplastic retinal disorder usually occurring in the context of metastatic melanoma. Patients present with night blindness, photopsias and a constriction of the visual field. MAR is an auto-immune disorder characterized by the production of autoantibodies targeting retinal proteins, especially autoantibodies reacting to the cation channel TRPM1 produced in melanocytes and ON-bipolar cells. TRPM1 has at least three different isoforms which vary in the N-terminal region of the protein. In this study, we report the case of three new MAR patients presenting different anti-TRPM1 autoantibodies reacting to the three isoforms of TRPM1 with variable binding affinity. Two sera recognized all isoforms of TRPM1, while one recognized only the two longest isoforms upon immunolocalization studies on overexpressing cells. Similarly, the former two sera reacted with all TRPM1 isoforms on western blot, but an immunoprecipitation enrichment step was necessary to detect all isoforms with the latter serum. In contrast, all sera labelled ON-bipolar cells on Tprm1+/+ but not on Trpm1-/- mouse retina as shown by co-immunolocalization. This confirms that the MAR sera specifically detect TRPM1. Most likely, the anti-TRPM1 autoantibodies of different patients vary in affinity and concentration. In addition, the binding of autoantibodies to TRPM1 may be conformation-dependent, with epitopes being inaccessible in some constructs (truncated polypeptides versus full-length TRPM1) or applications (western blotting versus immunohistochemistry). Therefore, we propose that a combination of different methods should be used to test for the presence of anti-TRPM1 autoantibodies in the sera of MAR patients

    Substantial restoration of night vision in adult mice with congenital stationary night blindness

    No full text
    International audienceComplete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucinerich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is nondegenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 À/À mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 À/À mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment

    Impaired presynaptic high-affinity choline transporter causes a congenital myasthenic syndrome with episodic apnea

    No full text
    The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse

    Impaired Presynaptic High-Affinity Choline Transporter Causes a Congenital Myasthenic Syndrome with Episodic Apnea

    No full text
    International audienceThe neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMS5), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse

    Where are the missing gene defects in inherited retinal disorders? Intronic and synonymous variants contribute at least to 4% of CACNA1F-mediated inherited retinal disorders

    No full text
    International audienceInherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.</p
    corecore