23 research outputs found

    Origin of micro-scale heterogeneity in polymerisation of photo-activated resin composites

    Get PDF
    Photo-activated resin composites are widely used in industry and medicine. Despite extensive chemical characterisation, the micro-scale pattern of resin matrix reactive group conversion between filler particles is not fully understood. Using an advanced synchrotron-based wide-field IR imaging system and state-of-the-art Mie scattering corrections, we observe how the presence of monodispersed silica filler particles in a methacrylate based resin reduces local conversion and chemical bond strain in the polymer phase. Here we show that heterogeneity originates from a lower converted and reduced bond strain boundary layer encapsulating each particle, whilst at larger inter-particulate distances light attenuation and monomer mobility predominantly influence conversion. Increased conversion corresponds to greater bond strain, however, strain generation appears sensitive to differences in conversion rate and implies subtle distinctions in the final polymer structure. We expect these findings to inform current predictive models of mechanical behaviour in polymer-composite materials, particularly at the resin-filler interface

    The author file: Rohit Bhargava and Carol Hirschmugl

    No full text

    Isolating stem cells in the inter-follicular epidermis employing synchrotron radiation-based Fourier-transform infrared microspectroscopy and focal plane array imaging

    No full text
    Normal function and physiology of the epidermis is maintained by the regenerative capacity of this tissue via adult stem cells (SCs). However, definitive identifying markers for SCs remain elusive. Infrared (IR) spectroscopy exploits the ability of cellular biomolecules to absorb in the mid-IR region (\ensuremathλ = 2.5-25 \ensuremathμm), detecting vibrational transitions of chemical bonds. In this study, we exploited the cell's inherent biochemical composition to discriminate SCs of the inter-follicular skin epidermis based on IR-derived markers. Paraffin-embedded samples of human scalp skin (n = 4) were obtained, and 10-\ensuremathμm thick sections were mounted for IR spectroscopy. Samples were interrogated in transmission mode using synchrotron radiation-based Fourier-transform IR (FTIR) microspectroscopy (15 × 15 \ensuremathμm) and also imaged employing globar-source FTIR focal plane array (FPA) imaging (5.4 × 5.4 \ensuremathμm). Dependent on the location of derived spectra, wavenumber-absorbance/intensity relationships were examined using unsupervised principal component analysis. This approach showed clear separation and spectral differences dependent on cell type. Spectral biomarkers concurrently associated with segregation of SCs, transit-amplifying cells and terminally-differentiated cells of epidermis were primarily PO(2)(-) vibrational modes (1,225 and 1,080 cm(-1)), related to DNA conformational alterations. FPA imaging coupled with hierarchical cluster analysis also indicated the presence of specific basal layer cells potentially originating from the follicular bulge, suggested by co-clustering of spectra. This study highlights PO (2) (-) vibrational modes as potential putative SC markers
    corecore