12,696 research outputs found

    Relaxation of strained silicon on Si0.5Ge0.5 virtual substrates

    Get PDF
    Strain relaxation has been studied in tensile strained silicon layers grown on Si0.5Ge0.5 virtual substrates, for layers many times the critical thickness, using high resolution x-ray diffraction. Layers up to 30 nm thick were found to relax less than 2% by the glide of preexisting 60° dislocations. Relaxation is limited because many of these dislocations dissociate into extended stacking faults that impede the dislocation glide. For thicker layers, nucleated microtwins were observed, which significantly increased relaxation to 14%. All these tensile strained layers are found to be much more stable than layers with comparable compressive strain

    Evaluation of thermal data for geologic applications

    Get PDF
    Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data

    Gas loading of graphene-quartz surface acoustic wave devices

    Get PDF
    Copyright © 2013 AIP PublishingGraphene was transferred to the propagation path of quartz surface acoustic wave devices and the attenuation due to gas loading of air and argon measured at 70 MHz and 210 MHz and compared to devices with no graphene. Under argon loading, there was no significant difference between the graphene and non-graphene device and the values of measured attenuation agree well with those calculated theoretically. Under air loading, at 210 MHz, there was a significant difference between the non-graphene and graphene devices, with the average value of attenuation obtained with the graphene devices being approximately twice that obtained from the bare quartz devices.Royal Societ

    Evolutionary games and quasispecies

    Full text link
    We discuss a population of sequences subject to mutations and frequency-dependent selection, where the fitness of a sequence depends on the composition of the entire population. This type of dynamics is crucial to understand the evolution of genomic regulation. Mathematically, it takes the form of a reaction-diffusion problem that is nonlinear in the population state. In our model system, the fitness is determined by a simple mathematical game, the hawk-dove game. The stationary population distribution is found to be a quasispecies with properties different from those which hold in fixed fitness landscapes.Comment: 7 pages, 2 figures. Typos corrected, references updated. An exact solution for the hawks-dove game is provide

    Magnetic field induced charge and spin instabilities in cuprate superconductors

    Get PDF
    A d-wave superconductor, subject to strong phase fluctuations, is known to suffer an antiferromagnetic instability closely related to the chiral symmetry breaking in (2+1)-dimensional quantum electrodynamics (QED3). On the basis of this idea we formulate a "QED3 in a box" theory of local instabilities of a d-wave superconductor in the vicinity of a single pinned vortex undergoing quantum fluctuations around its equilibrium position. As a generic outcome we find an incommensurate 2D spin density wave forming in the neighborhood of a vortex with a concomitant "checkerboard" pattern in the local electronic density of states, in agreement with recent neutron scattering and tunneling spectroscopy measurements.Comment: 4 pages REVTeX + 2 PostScript figures included in text. Version to appear in PRL (minor stylistic changes, references updated). For related work and info visit http://www.physics.ubc.ca/~fran

    Quantum strategies

    Full text link
    We consider game theory from the perspective of quantum algorithms. Strategies in classical game theory are either pure (deterministic) or mixed (probabilistic). We introduce these basic ideas in the context of a simple example, closely related to the traditional Matching Pennies game. While not every two-person zero-sum finite game has an equilibrium in the set of pure strategies, von Neumann showed that there is always an equilibrium at which each player follows a mixed strategy. A mixed strategy deviating from the equilibrium strategy cannot increase a player's expected payoff. We show, however, that in our example a player who implements a quantum strategy can increase his expected payoff, and explain the relation to efficient quantum algorithms. We prove that in general a quantum strategy is always at least as good as a classical one, and furthermore that when both players use quantum strategies there need not be any equilibrium, but if both are allowed mixed quantum strategies there must be.Comment: 8 pages, plain TeX, 1 figur

    Surface plasmon-polariton study of the optical dielectric function of titanium nitride

    Get PDF
    This is an electronic version of an article published in Journal of Modern Optics, Vol. 45, Issue 10 (1998), pp. 2051–2062. JOURNAL OF MODERN OPTICS is available online at: http://www.informaworld.com/openurl?genre=article&issn=0950-0340&volume=45&issue=10&spage=2051This work presents the first detailed study of the optical dielectric function of optically thick TiNx films using grating coupling of radiation to surface plasmon-polaritons. Angle-dependent reflectivities are obtained in the wavelength range 500-875 nm and by comparison with grating modelling theory, we determine both the imaginary and the real parts of the dielectric function. This method provides an alternative to traditional characterization techniques (e.g. Kramers-Kronig analysis) that may require additional information about film thickness, or the sample's optical properties in other parts of the electromagnetic spectrum. We have fitted the determined dielectric function to a model based on a combination of interband absorptions and free-electron response evaluating both the plasma energy and the relaxation time

    Solution of the X-ray edge problem for 2D electrons in a magnetic field

    Full text link
    The absorption and emission spectra of transitions between a localized level and a two-dimensional electron gas, subjected to a weak magnetic field, are calculated analytically. Adopting the Landau level bosonization technique developed in previous papers, we find an exact expression for the relative intensities of spectral lines. Their envelope function, governed by the interaction between the electron gas and the core hole, is reminescent of the famous Fermi edge singularity, which is recovered in the limit of a vanishing magnetic field.Comment: 4 pages, 1 figur

    Switching to second-line antiretroviral therapy in resource-limited settings: comparison of programmes with and without viral load monitoring.

    Get PDF
    In high-income countries, viral load is routinely measured to detect failure of antiretroviral therapy (ART) and guide switching to second-line ART. Viral load monitoring is not generally available in resource-limited settings. We examined switching from nonnucleoside reverse transcriptase inhibitor (NNRTI)-based first-line regimens to protease inhibitor-based regimens in Africa, South America and Asia
    • …
    corecore